A new approach to modeling co-movement of international equity markets: evidence of unconditional copula-based simulation of tail dependence

Analyzing equity market co-movements is important for risk diversification of an international portfolio. Copulas have several advantages compared to the linear correlation measure in modeling co-movement. This paper introduces a copula ARMA-GARCH model for analyzing the co-movement of international equity markets. The model is implemented with an ARMA-GARCH model for the marginal distributions and a copula for the joint distribution. After goodness of fit testing, we find that the Student’s t copula ARMA(1,1)-GARCH(1,1) model with fractional Gaussian noise is superior to alternative models investigated in our study where we model the simultaneous co-movement of nine international equity market indexes. This model is also suitable for capturing the long-range dependence and tail dependence observed in international equity markets.

[1]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .

[2]  Gennady Samorodnitsky,et al.  Long strange segments of a stochastic process , 2001 .

[3]  R. Nelsen An Introduction to Copulas , 1998 .

[4]  Svetlozar T. Rachev,et al.  An Ideal Metric and the Rate of Convergence to a Self-Similar Process , 1987 .

[5]  Frank J. Fabozzi,et al.  Long-Range Dependence, Fractal Processes, and Intra-Daily Data , 2008 .

[6]  A. Zeevi,et al.  Beyond Correlation: Extreme Co-Movements between Financial Assets , 2002 .

[7]  E. Fama The Behavior of Stock-Market Prices , 1965 .

[8]  P. Mykland,et al.  Estimators of diffusions with randomly spaced discrete observations: A general theory , 2004, math/0503679.

[9]  Walter Willinger,et al.  Self-similarity and heavy tails: structural modeling of network traffic , 1998 .

[10]  J. R. Wallis,et al.  Noah, Joseph, and Operational Hydrology , 1968 .

[11]  M. Dacorogna,et al.  Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis , 1990 .

[12]  Marc S. Paolella,et al.  Stationarity of stable power-GARCH processes , 2002 .

[13]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[14]  Jonathan H. Wright,et al.  Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data , 2000 .

[15]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[16]  M. Taqqu,et al.  Simulation methods for linear fractional stable motion and farima using the fast fourier transform , 2004 .

[17]  Gennady Samorodnitsky,et al.  Long strange segments of a stochastic process and long range dependence , 1999 .

[18]  Makoto Maejima,et al.  On a class of self-similar processes , 1983 .

[19]  E. Luciano,et al.  Copula methods in finance , 2004 .

[20]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[21]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[22]  Possible sample paths of self-similar α-stable processes , 1994 .

[23]  H. Joe Multivariate models and dependence concepts , 1998 .

[24]  Vern Paxson,et al.  Fast, approximate synthesis of fractional Gaussian noise for generating self-similar network traffic , 1997, CCRV.

[25]  Vladas Pipiras,et al.  Estimation of the self-similarity parameter in linear fractional stable motion , 2002, Signal Process..

[26]  Yann Le Fur,et al.  International Market Correlation and Volatility , 1996 .

[27]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[28]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[29]  A. Philippe,et al.  Generators of long-range dependent processes: A survey , 2003 .

[30]  P. Embrechts,et al.  Chapter 8 – Modelling Dependence with Copulas and Applications to Risk Management , 2003 .

[31]  S. Rachev Handbook of heavy tailed distributions in finance , 2003 .

[32]  E. Fama,et al.  Parameter Estimates for Symmetric Stable Distributions , 1971 .

[33]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[34]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[35]  E. Fama Mandelbrot and the Stable Paretian Hypothesis , 1963 .

[36]  C. D. Vries,et al.  The Limiting Distribution of Extremal Exchange Rate Returns , 1991 .

[37]  S. Rachev,et al.  Stable Paretian Models in Finance , 2000 .

[38]  S. Rachev,et al.  Fractals or I.I.D.: Evidence of long-range dependence and heavy tailedness from modeling German equity market returns , 2007 .

[39]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[40]  B. Mandelbrot New Methods in Statistical Economics , 1963, Journal of Political Economy.

[41]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[42]  Ling Hu Dependence patterns across financial markets: a mixed copula approach , 2006 .

[43]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[44]  H. Hurst METHODS OF USING LONG-TERM STORAGE IN RESERVOIRS. , 1956 .

[45]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[46]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[47]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[48]  S. Rachev,et al.  Modeling asset returns with alternative stable distributions , 1993 .

[49]  Gennady Samorodnitsky,et al.  Long strange segments in a long-range-dependent moving average☆ , 2001 .

[50]  W. Wasserfallen,et al.  The behavior of intra-daily exchange rates , 1985 .

[51]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[52]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[53]  Guofu Zhou,et al.  Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation , 2003 .

[54]  Svetlozar T. Rachev,et al.  Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration , 2008 .

[55]  Mark A. McComb A Practical Guide to Heavy Tails , 2000, Technometrics.