Input-Driven Pushdown Automata with Limited Nondeterminism - (Invited Paper)

It is known that determinizing a nondeterministic input-driven pushdown automaton (NIDPDA) of size n results in the worst case in a machine of size \(2^{\Theta(n^2)}\) (R. Alur, P. Madhusudan, “Adding nesting structure to words”, J.ACM 56(3), 2009). This paper considers the special case of k-path NIDPDAs, which have at most k computations on any input. It is shown that the smallest deterministic IDPDA equivalent to a k-path NIDPDA of size n is of size Θ(n k ). The paper also gives an algorithm for deciding whether or not a given NIDPDA has the k-path property, for a given k; if k is fixed, the problem is P-complete.

[1]  Hing Leung Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous Finite Automata , 1998, SIAM J. Comput..

[2]  Hartmut Klauck,et al.  Communication Complexity Method for Measuring Nondeterminism in Finite Automata , 2002, Inf. Comput..

[3]  Maxime Crochemore,et al.  Finding Patterns In Given Intervals , 2007, Fundam. Informaticae.

[4]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[5]  Andreas Malcher,et al.  Descriptional Complexity of Machines with Limited Resources , 2002, J. Univers. Comput. Sci..

[6]  Kai Salomaa,et al.  Limitations of lower bound methods for deterministic nested word automata , 2011, Inf. Comput..

[7]  K. Mehlhorn Pebbling Moutain Ranges and its Application of DCFL-Recognition , 1980, ICALP.

[8]  Rupak Majumdar,et al.  A Uniformization Theorem for Nested Word to Word Transductions , 2013, CIAA.

[9]  Hing Leung Descriptional complexity of nfa of different ambiguity , 2005, Int. J. Found. Comput. Sci..

[10]  Martin Lange,et al.  P-hardness of the emptiness problem for visibly pushdown languages , 2011, Inf. Process. Lett..

[11]  Stefano Crespi-Reghizzi,et al.  Operator Precedence and the Visibly Pushdown Property , 2010, LATA.

[12]  Selim G. Akl,et al.  State Complexity of Finite Tree Width NFAs , 2012, J. Autom. Lang. Comb..

[13]  Jonathan Goldstine,et al.  On Measuring Nondeterminism in Regular Languages , 1990, Inf. Comput..

[14]  Selim G. Akl,et al.  State Complexity and Limited Nondeterminism , 2012, DCFS.

[15]  Alexander Okhotin Unambiguous finite automata over a unary alphabet , 2012, Inf. Comput..

[16]  Sheng Yu,et al.  On the State Complexity of k-Entry Deterministic Finite Automata , 2001, J. Autom. Lang. Comb..

[17]  Alexander Okhotin,et al.  Complexity of input-driven pushdown automata , 2014, SIGA.

[18]  Joachim Niehren,et al.  Early Nested Word Automata for XPath Query Answering on XML Streams , 2013, CIAA.

[19]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[20]  Igor Walukiewicz,et al.  Minimizing Variants of Visibly Pushdown Automata , 2007, MFCS.

[21]  Joachim Niehren,et al.  Streaming tree automata , 2008, Inf. Process. Lett..

[22]  Lane A. Hemaspaandra SIGACT news complexity theory column 82 , 2014, SIGA.

[23]  Alexander Okhotin,et al.  Descriptional Complexity of Input-Driven Pushdown Automata , 2012, Languages Alive.

[24]  Burchard von Braunmühl,et al.  Input-Driven Languages are Recognized in log n Space , 1983, FCT.

[25]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[26]  Henrik Björklund,et al.  The Tractability Frontier for NFA Minimization , 2008, ICALP.

[27]  Stavros Konstantinidis Implementation and Application of Automata (CIAA 2013) , 2015, Theor. Comput. Sci..

[28]  R. Alur,et al.  Adding nesting structure to words , 2006, JACM.

[29]  Patrick W. Dymond Input-Driven Languages are in log n Depth , 1988, Inf. Process. Lett..

[30]  Alexander Okhotin,et al.  Descriptional Complexity of Formal Systems , 2016, Theor. Comput. Sci..

[31]  Jeffrey Shallit,et al.  A Second Course in Formal Languages and Automata Theory , 2008 .

[32]  Alexander Okhotin,et al.  Descriptional Complexity of Unambiguous Nested Word Automata , 2011, LATA.

[33]  Selim G. Akl,et al.  Comparisons between Measures of Nondeterminism on Finite Automata , 2013, DCFS.