New method to observe gravitational waves emitted by core collapse supernovae

While gravitational waves have been detected from mergers of binary black holes and binary neutron stars, signals from core collapse supernovae, the most energetic explosions in the modern Universe, have not been detected yet. Here we present a new method to analyse the data of the LIGO, Virgo and KAGRA network to enhance the detection efficiency of this category of signals. The method takes advantage of a peculiarity of the gravitational wave signal emitted in the core collapse supernova and it is based on a classification procedure of the time-frequency images of the network data performed by a convolutional neural network trained to perform the task to recognize the signal. We validate the method using phenomenological waveforms injected in Gaussian noise whose spectral properties are those of the LIGO and Virgo advanced detectors and we conclude that this method can identify the signal better than the present algorithm devoted to select gravitational wave transient signal.

[1]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[2]  Elena Cuoco,et al.  Image-based deep learning for classification of noise transients in gravitational wave detectors , 2018, ArXiv.

[3]  Adam Burrows,et al.  The Gravitational Wave Signal from Core-collapse Supernovae , 2018, The Astrophysical Journal.

[4]  Hunter Gabbard,et al.  Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. , 2017, Physical review letters.

[5]  I. Palma,et al.  Estimation of the gravitational wave polarizations from a nontemplate search , 2017, 1712.05580.

[6]  J. Font,et al.  Towards asteroseismology of core-collapse supernovae with gravitational-wave observations – I. Cowling approximation , 2017, 1708.01920.

[7]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[8]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[9]  Daniel George,et al.  Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Advanced LIGO Data , 2017, ArXiv.

[10]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[11]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[12]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[13]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[14]  K. Kotake,et al.  Probing mass-radius relation of protoneutron stars from gravitational-wave asteroseismology , 2017, 1708.03738.

[15]  G. Vedovato,et al.  Enhancing the significance of gravitational wave bursts through signal classification , 2017, 1702.03208.

[16]  C. Ott,et al.  Equation of state effects on gravitational waves from rotating core collapse , 2017, 1701.02752.

[17]  Y. Wang,et al.  All-sky search for short gravitational-wave bursts in the first Advanced LIGO run , 2016, 1611.02972.

[18]  Tum,et al.  Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae , 2016, 1607.05199.

[19]  Qi Feng,et al.  The analysis of VERITAS muon images using convolutional neural networks , 2016, Proceedings of the International Astronomical Union.

[20]  Edward J. Kim,et al.  Star-galaxy Classification Using Deep Convolutional Neural Networks , 2016, ArXiv.

[21]  T. Takiwaki,et al.  Gravitational wave asteroseismology with protoneutron stars , 2016, 1608.01048.

[22]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[23]  K. Kotake,et al.  A NEW GRAVITATIONAL-WAVE SIGNATURE FROM STANDING ACCRETION SHOCK INSTABILITY IN SUPERNOVAE , 2016, 1605.09215.

[24]  P. Vahle,et al.  A convolutional neural network neutrino event classifier , 2016, ArXiv.

[25]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[26]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[27]  H. Janka,et al.  PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE , 2015, 1511.07871.

[28]  O. E. Bronson Messer,et al.  Gravitational Wave Signatures of Ab Initio Two-Dimensional Core Collapse Supernova Explosion Models for 12-25 Solar Masses Stars , 2015, 1505.05824.

[29]  R. Lynch,et al.  Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data , 2015, 1505.01299.

[30]  Caltech,et al.  Measuring the angular momentum distribution in core-collapse supernova progenitors with gravitational waves , 2013, 1311.3678.

[31]  M. Aloy,et al.  GRAVITATIONAL WAVE SIGNATURES IN BLACK HOLE FORMING CORE COLLAPSE , 2013, 1310.8290.

[32]  H. Janka,et al.  A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE OF CORE-COLLAPSE SUPERNOVAE. III. GRAVITATIONAL WAVE SIGNALS FROM SUPERNOVA EXPLOSION MODELS , 2012, 1210.6984.

[33]  A. Burrows Colloquium: Perspectives on core-collapse supernova theory , 2012, 1210.4921.

[34]  Garching,et al.  Core-collapse supernovae: Reflections and directions , 2012, 1211.1378.

[35]  V. Necula,et al.  Transient analysis with fast Wilson-Daubechies time-frequency transform , 2012 .

[36]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[37]  C. Ott,et al.  A MODEL FOR GRAVITATIONAL WAVE EMISSION FROM NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE , 2009, 0907.4762.

[38]  H. Janka,et al.  Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae , 2008, 0808.4136.

[39]  C. Ott,et al.  Gravitational wave burst signal from core collapse of rotating stars , 2008, 0806.4953.

[40]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[41]  Tx,et al.  Constraint Likelihood analysis for a network of gravitational wave detectors , 2005, gr-qc/0508068.

[42]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[43]  J. Font,et al.  Relativistic simulations of rotational core collapse - II. Collapse dynamics and gravitational radiation , 2002, astro-ph/0204289.

[44]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[45]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[46]  Hirata,et al.  Observation of a neutrino burst from the supernova SN1987A. , 1987, Physical review letters.

[47]  H. Kalmus Biological Cybernetics , 1972, Nature.

[48]  J. Wheeler,et al.  RELATIVISTIC COSMOLOGY AND SPACE PLATFORMS. , 1971 .