Detection limits in photothermal microscopy

We show how to push the detection limits in photothermal microscopy towards weaker single absorbers, by a systematic optimization of signal and noise sources. In particular, we (i) maximize the power of the probe laser beam, (ii) select optimal optical and thermal properties for the medium embedding the absorber, and (iii) thermally isolate the absorber from the glass substrate. These different experimental conditions are optimized in turn with single immobilized gold nanoparticles. We demonstrate the detection of a dissipated power of 3 nW with a signal-to-noise ratio of 8, and an integration time of 10 ms. This corresponds to a less than 0.1 K surface temperature rise for a 20 nm-diameter gold nanosphere (0.4 K for 5 nm). As an example of the achieved detection sensitivity, we show simultaneous photothermal and fluorescence detection of individual 20 nm fluorescent beads, each containing about 20 Nile red dye molecules.

[1]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[2]  Takehiko Kitamori,et al.  Individual detection of single-nanometer-sized particles in liquid by photothermal microscope. , 1998, Analytical chemistry.

[3]  T Kitamori,et al.  Determination of subyoctomole amounts of nonfluorescent molecules using a thermal lens microscope: subsingle-molecule determination. , 2001, Analytical chemistry.

[4]  M. El-Sayed Spectroscopic determination of the melting energy of a gold nanorod , 2001 .

[5]  M. Orrit,et al.  Imaging single metal nanoparticles in scattering media by photothermal interference contrast , 2003 .

[6]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[7]  H. Kalt,et al.  Solid immersion lens-enhanced nano-photoluminescence: Principle and applications , 2002, physics/0207045.

[8]  D. Choquet,et al.  Single metallic nanoparticle imaging for protein detection in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[10]  Richard A. Palmer,et al.  Quantities, terminology, and symbols in photothermal and related spectroscopies (IUPAC Recommendations 2004) , 2004 .

[11]  Gerhard A Blab,et al.  Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. , 2004, Physical review letters.

[12]  L. Cognet,et al.  Photothermal absorption spectroscopy of individual semiconductor nanocrystals. , 2005, Nano letters.

[13]  Stéphane Berciaud,et al.  Observation of intrinsic size effects in the optical response of individual gold nanoparticles. , 2005, Nano letters.

[14]  Laurent Cognet,et al.  Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment , 2006 .

[15]  G. A. Blab,et al.  Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. , 2006, Biophysical journal.

[16]  M. Orrit,et al.  Absorption and scattering microscopy of single metal nanoparticles. , 2006, Physical chemistry chemical physics : PCCP.

[17]  G. A. Blab,et al.  Optical readout of gold nanoparticle-based DNA microarrays without silver enhancement. , 2006, Biophysical journal.

[18]  Gerhard A Blab,et al.  Label-free optical imaging of mitochondria in live cells. , 2007, Optics express.

[19]  Stéphane Berciaud,et al.  Absorption spectroscopy of individual single-walled carbon nanotubes. , 2007, Nano letters.

[20]  L. Cognet,et al.  Photothermal methods for single nonluminescent nano-objects. , 2008, Analytical chemistry.

[21]  Gilles Tessier,et al.  Heterodyne holographic microscopy of gold particles. , 2007, Optics letters.

[22]  H. Spaink,et al.  Photothermal detection of individual gold nanoparticles: perspectives for high-throughput screening. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  H. Spaink,et al.  Photothermal Correlation Spectroscopy of Gold Nanoparticles in Solution , 2009 .

[24]  J. Chon,et al.  White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods. , 2009, Physical chemistry chemical physics : PCCP.

[25]  L. Cognet,et al.  Photothermal absorption correlation spectroscopy. , 2009, ACS nano.

[26]  F. Cichos,et al.  Hot brownian particles and photothermal correlation spectroscopy. , 2009, The journal of physical chemistry. A.

[27]  S. Link,et al.  Plasmonic nanorod absorbers as orientation sensors , 2010, Proceedings of the National Academy of Sciences.

[28]  M. Atlan,et al.  Photothermal heterodyne holography of gold nanoparticles. , 2010, Optics express.