A threshold for the size of random caps to cover a sphere
暂无分享,去创建一个
Consider a unit sphere on which are placed N random spherical caps of area 4πp(N). We prove that if % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaaca% qGSbGaaeyAaiaab2gaaaWaaeWaaeaacaWGWbWaaeWaaeaacaWGobaa% caGLOaGaayzkaaGaai4Taiaad6eacaGGVaGaaeiBaiaab+gacaqGNb% Gaaeiiaiaad6eaaiaawIcacaGLPaaacqGH8aapcaaIXaaaaa!454E!\[\overline {{\rm{lim}}} \left( {p\left( N \right)\cdotN/{\rm{log }}N} \right) < 1\], then the probability that the sphere is completely covered by N caps tends to 0 as N → ∞, and if % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaWaaaeaaca% qGSbGaaeyAaiaab2gaaaWaaeWaaeaacaWGWbWaaeWaaeaacaWGobaa% caGLOaGaayzkaaGaai4Taiaad6eacaGGVaGaaeiBaiaab+gacaqGNb% Gaaeiiaiaad6eaaiaawIcacaGLPaaacqGH+aGpcaaIXaaaaa!4551!\[\underline {{\rm{lim}}} \left( {p\left( N \right)\cdotN/{\rm{log }}N} \right) > 1\], then for any integer n>0 the probability that each point of the sphere is covered more than n times tends to 1 as N → ∞.