eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition.

[1]  Joachim Frank,et al.  Structure of mammalian eIF3 in the context of the 43S preinitiation complex , 2015, Nature.

[2]  Colin Echeverría Aitken,et al.  Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex , 2015, Molecular cell.

[3]  G. Eriani,et al.  Purification of mRNA‐programmed translation initiation complexes suitable for mass spectrometry analysis , 2015, Proteomics.

[4]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[5]  J. Cate,et al.  eIF3 targets cell proliferation mRNAs for translational activation or repression , 2015, Nature.

[6]  Xueming Li,et al.  Alignment of direct detection device micrographs using a robust Optical Flow approach. , 2015, Journal of structural biology.

[7]  A. Hinnebusch,et al.  Conformational changes in the P site and mRNA entry channel evoked by AUG recognition in yeast translation preinitiation complexes , 2015, Nucleic acids research.

[8]  D. Boehringer,et al.  Structure of a Yeast 40S–eIF1–eIF1A–eIF3–eIF3j initiation complex , 2015, Nature Structural &Molecular Biology.

[9]  A. Hinnebusch,et al.  Structural Changes Enable Start Codon Recognition by the Eukaryotic Translation Initiation Complex , 2014, Cell.

[10]  Marina V. Rodnina,et al.  Structural basis for the inhibition of the eukaryotic ribosome , 2014, Nature.

[11]  R. Aebersold,et al.  Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex , 2014, Cell.

[12]  T. Mielke,et al.  Structure of the mammalian 80S initiation complex with initiation factor 5B on HCV-IRES RNA , 2014, Nature Structural &Molecular Biology.

[13]  U. Hassiepen,et al.  Crystal structure of the human COP9 signalosome , 2014, Nature.

[14]  P. Neumann,et al.  Translation initiation factor eIF3b contains a nine-bladed β-propeller and interacts with the 40S ribosomal subunit. , 2014, Structure.

[15]  Alan G Hinnebusch,et al.  The scanning mechanism of eukaryotic translation initiation. , 2014, Annual review of biochemistry.

[16]  V. Ramakrishnan,et al.  Molecular Architecture of a Eukaryotic Translational Initiation Complex , 2013, Science.

[17]  H. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[18]  J M Carazo,et al.  Xmipp 3.0: an improved software suite for image processing in electron microscopy. , 2013, Journal of structural biology.

[19]  Yoel Shkolnisky,et al.  A pattern matching approach to the automatic selection of particles from low-contrast electron micrographs , 2013, Bioinform..

[20]  T. Steitz,et al.  The initiation of mammalian protein synthesis and the mechanism of scanning , 2013, Nature.

[21]  J. Frank,et al.  Structure of the Mammalian Ribosomal 43S Preinitiation Complex Bound to the Scanning Factor DHX29 , 2013, Cell.

[22]  G. Eriani,et al.  Rapid purification of ribosomal particles assembled on histone H4 mRNA: a new method based on mRNA-DNA chimaeras. , 2013, The Biochemical journal.

[23]  A. Hinnebusch,et al.  Coordinated Movements of Eukaryotic Translation Initiation Factors eIF1, eIF1A, and eIF5 Trigger Phosphate Release from eIF2 in Response to Start Codon Recognition by the Ribosomal Preinitiation Complex* , 2013, The Journal of Biological Chemistry.

[24]  S. Scheres RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[25]  Vidya Dhote,et al.  Roles of individual domains in the function of DHX29, an essential factor required for translation of structured mammalian mRNAs , 2012, Proceedings of the National Academy of Sciences.

[26]  F. Förster,et al.  Near-atomic resolution structural model of the yeast 26S proteasome , 2012, Proceedings of the National Academy of Sciences.

[27]  M. Yusupov,et al.  The structure of the eukaryotic ribosome at 3.0 A resolution. This entry contains proteins of the 40S subunit, ribosome A , 2011 .

[28]  Ji-Chun Yang,et al.  Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly , 2011, Nucleic acids research.

[29]  R. Jackson,et al.  The mechanism of translation initiation on Aichivirus RNA mediated by a novel type of picornavirus IRES , 2011, The EMBO journal.

[30]  C. Hellen,et al.  Bypassing of stems versus linear base‐by‐base inspection of mammalian mRNAs during ribosomal scanning , 2011, The EMBO journal.

[31]  P. Hufnagel,et al.  Bioinformatics Strategies in Life Sciences: From Data Processing and Data Warehousing to Biological Knowledge Extraction , 2010, GI Jahrestagung.

[32]  Thomas D. Goddard,et al.  Quantitative analysis of cryo-EM density map segmentation by watershed and scale-space filtering, and fitting of structures by alignment to regions. , 2010, Journal of structural biology.

[33]  R. Jackson,et al.  The mechanism of eukaryotic translation initiation and principles of its regulation , 2010, Nature Reviews Molecular Cell Biology.

[34]  Tilman Schneider-Poetsch,et al.  Inhibition of Eukaryotic Translation Elongation by Cycloheximide and Lactimidomycin , 2010, Nature chemical biology.

[35]  Ola Larsson,et al.  The helicase protein DHX29 promotes translation initiation, cell proliferation, and tumorigenesis , 2009, Proceedings of the National Academy of Sciences.

[36]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[37]  A. Komar,et al.  Translation Initiation on Mammalian mRNAs with Structured 5′UTRs Requires DExH-Box Protein DHX29 , 2008, Cell.

[38]  Daniel Barsky,et al.  Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3 , 2008, Proceedings of the National Academy of Sciences.

[39]  Bruno P. Klaholz,et al.  Structure of the 30S translation initiation complex , 2008, Nature.

[40]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[41]  A. Tzakos,et al.  Structure of eIF3b RNA Recognition Motif and Its Interaction with eIF3j , 2007, Journal of Biological Chemistry.

[42]  Alan G Hinnebusch,et al.  eIF3: a versatile scaffold for translation initiation complexes. , 2006, Trends in biochemical sciences.

[43]  J. Frank,et al.  A library of RNA bridges , 2006, Nature chemical biology.

[44]  C. Hellen,et al.  Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. , 2005, RNA.

[45]  C. Hellen,et al.  Release of initiation factors from 48S complexes during ribosomal subunit joining and the link between establishment of codon-anticodon base-pairing and hydrolysis of eIF2-bound GTP. , 2004, Genes & development.

[46]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[47]  J. Doudna,et al.  The j-Subunit of Human Translation Initiation Factor eIF3 Is Required for the Stable Binding of eIF3 and Its Subcomplexes to 40 S Ribosomal Subunits in Vitro* , 2004, Journal of Biological Chemistry.

[48]  Jon R Lorsch,et al.  GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. , 2004, Journal of molecular biology.

[49]  T. Pestova,et al.  The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. , 2002, Genes & development.

[50]  A. Hinnebusch,et al.  A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNAiMet , 2001, The EMBO journal.

[51]  C. Hellen,et al.  The joining of ribosomal subunits in eukaryotes requires eIF5B , 2000, Nature.

[52]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[53]  A. Hinnebusch,et al.  Complex Formation by All Five Homologues of Mammalian Translation Initiation Factor 3 Subunits from Yeast Saccharomyces cerevisiae * , 1998, The Journal of Biological Chemistry.

[54]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[55]  N. Gray,et al.  Iron regulatory protein prevents binding of the 43S translation pre‐initiation complex to ferritin and eALAS mRNAs. , 1994, The EMBO journal.

[56]  W. Merrick,et al.  Analysis of 40 S and 80 S complexes with mRNA as measured by sucrose density gradients and primer extension inhibition. , 1992, The Journal of biological chemistry.

[57]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[58]  José María Carazo,et al.  Semiautomatic, high-throughput, high-resolution protocol for three-dimensional reconstruction of single particles in electron microscopy. , 2013, Methods in molecular biology.

[59]  Joshua E. Elias,et al.  Target-Decoy Search Strategy for Mass Spectrometry-Based Proteomics , 2010, Proteome Bioinformatics.

[60]  Torsten Schwede,et al.  BIOINFORMATICS Bioinformatics Advance Access published November 12, 2005 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling , 2022 .