THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE–GALAXY SCALING RELATIONS

We show that the MBH–Mbulge scaling relations observed from the local to the high-z universe can be largely or even entirely explained by a non-causal origin, i.e., they do not imply the need for any physically coupled growth of black hole (BH) and bulge mass, for example, through feedback by active galactic nuclei (AGNs). Provided some physics for the absolute normalization, the creation of the scaling relations can be fully explained by the hierarchical assembly of BH and stellar mass through galaxy merging, from an initially uncorrelated distribution of BH and stellar masses in the early universe. We show this with a suite of dark matter halo merger trees for which we make assumptions about (uncorrelated) BH and stellar mass values at early cosmic times. We then follow the halos in the presence of global star formation and BH accretion recipes that (1) work without any coupling of the two properties per individual galaxy and (2) correctly reproduce the observed star formation and BH accretion rate density in the universe. With disk-to-bulge conversion in mergers included, our simulations even create the observed slope of ∼1.1 for the MBH–Mbulge relation at z = 0. This also implies that AGN feedback is not a required (though still a possible) ingredient in galaxy evolution. In light of this, other mechanisms that can be invoked to truncate star formation in massive galaxies are equally justified.

[1]  F. Marulli,et al.  The SMBH mass versus MGσ2 relation: a comparison between real data and numerical models , 2010, 1002.1703.

[2]  Takamitsu Miyaji,et al.  THE BULK OF THE BLACK HOLE GROWTH SINCE z ∼ 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER–AGN CONNECTION , 2010, 1009.3265.

[3]  R. Somerville,et al.  On the evolution of the intrinsic scatter in black hole versus galaxy mass relations , 2010, 1005.2100.

[4]  C. Gaskell The Origin of the Relationship between Black Hole Mass and Host Galaxy Bulge Luminosity , 2010, 1004.1180.

[5]  Andreas Burkert,et al.  A CORRELATION BETWEEN CENTRAL SUPERMASSIVE BLACK HOLES AND THE GLOBULAR CLUSTER SYSTEMS OF EARLY-TYPE GALAXIES , 2010, 1004.0137.

[6]  D. Thompson,et al.  RADIO GALAXY FEEDBACK IN X-RAY-SELECTED GROUPS FROM COSMOS: THE EFFECT ON THE INTRACLUSTER MEDIUM , 2010, 1002.4212.

[7]  G. Cresci,et al.  THE IMPACT OF COLD GAS ACCRETION ABOVE A MASS FLOOR ON GALAXY SCALING RELATIONS , 2009, 0912.1858.

[8]  A. Treves,et al.  The quasar relation through cosmic time – II. Evidence for evolution from z = 3 to the present age , 2009, 0911.2988.

[9]  P. Hopkins,et al.  How do massive black holes get their gas , 2009, 0912.3257.

[10]  T. Treu,et al.  COSMIC EVOLUTION OF BLACK HOLES AND SPHEROIDS. IV. THE MBH–Lsph RELATION , 2009, 0911.4107.

[11]  J. Trump,et al.  ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY , 2009, 0910.4970.

[12]  T. Naab,et al.  THE EVOLUTION OF BLACK HOLE SCALING RELATIONS IN GALAXY MERGERS , 2009, 0910.2232.

[13]  L. Mancini,et al.  A HERTZSPRUNG–RUSSELL-LIKE DIAGRAM FOR GALAXIES: THE M• VERSUS MGσ2 RELATION , 2009 .

[14]  Kyle R. Stewart,et al.  MERGERS AND BULGE FORMATION IN ΛCDM: WHICH MERGERS MATTER? , 2009, 0906.5357.

[15]  F. Fontanot,et al.  Faint Lyman-break galaxies as a crucial test for galaxy formation models , 2009, 0906.4998.

[16]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[17]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[18]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[19]  Cambridge,et al.  Luminosity function and radial distribution of Milky Way satellites in a ΛCDM Universe , 2009, 0903.4681.

[20]  M. Volonteri,et al.  Journey to the MBH-σ relation: the fate of low-mass black holes in the Universe , 2009, 0903.2262.

[21]  G. Kauffmann,et al.  The growth of supermassive black holes in pseudo-bulges, classical bulges and elliptical galaxies , 2008, 0811.1219.

[22]  L. Ho,et al.  Black Holes in Pseudobulges and Spheroidals: A Change in the Black Hole-Bulge Scaling Relations at Low Mass , 2008, 0810.1972.

[23]  USA,et al.  SELF-CONSISTENT MODELS OF THE AGN AND BLACK HOLE POPULATIONS: DUTY CYCLES, ACCRETION RATES, AND THE MEAN RADIATIVE EFFICIENCY , 2007, 0710.4488.

[24]  L. Wisotzki,et al.  Host galaxies of bright high redshift quasars: luminosities and colours , 2007, 0709.2568.

[25]  E. Quataert,et al.  Dynamical friction and galaxy merging time-scales , 2007, 0707.2960.

[26]  C. Peng How Mergers May Affect the Mass Scaling Relation between Gravitationally Bound Systems , 2007 .

[27]  Lars Hernquist,et al.  An Observed Fundamental Plane Relation for Supermassive Black Holes , 2007, 0707.4005.

[28]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. II. Scaling Relations at z = 0.36 , 2007, 0706.0519.

[29]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[30]  D. Richstone,et al.  Host Galaxy Bulge Predictors of Supermassive Black Hole Mass , 2007, 0705.1165.

[31]  S. Khochfar,et al.  Adding Environmental Gas Physics to the Semianalytic Method for Galaxy Formation: Gravitational Heating , 2007, 0704.2418.

[32]  C. Peng How Mergers May Affect The Mass Scaling Relations Between Black Holes, Galaxies, and Other Gravita , 2007, 0704.1860.

[33]  H. Mo,et al.  On the assembly history of dark matter haloes , 2005, astro-ph/0510372.

[34]  F. Fontanot,et al.  The morgana model for the rise of galaxies and active nuclei , 2006, astro-ph/0610805.

[35]  G. Kauffmann,et al.  AGN-controlled cooling in elliptical galaxies , 2006 .

[36]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. I. The MBH-σ Relation at z = 0.36 , 2006, astro-ph/0603648.

[37]  J. Lehár,et al.  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[38]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[39]  C. Crawford,et al.  A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction , 2005, astro-ph/0510476.

[40]  L. Ho,et al.  Probing the Coevolution of Supermassive Black Holes and Quasar Host Galaxies , 2005, astro-ph/0509155.

[41]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[42]  Volker Springel,et al.  The Many lives of AGN: Cooling flows, black holes and the luminosities and colours of galaxies , 2006, astro-ph/0602065.

[43]  P. Hopkins,et al.  The Evolution of the MBH-σ Relation , 2005, astro-ph/0506038.

[44]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[45]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[46]  T. Treu,et al.  The Relation Between Black Hole Mass and Velocity Dispersion at z ~ 0.37 , 2004, astro-ph/0410007.

[47]  J. Kormendy,et al.  Secular Evolution and the Formation of Pseudobulges in Disk Galaxies , 2004, astro-ph/0407343.

[48]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[49]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[50]  G. Granato,et al.  A Physical Model for the Coevolution of QSOs and Their Spheroidal Hosts , 2003, astro-ph/0307202.

[51]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[52]  Piero Madau,et al.  The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation , 2002, astro-ph/0207276.

[53]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[54]  T. Theuns,et al.  The pinocchio algorithm: pinpointing orbit-crossing collapsed hierarchical objects in a linear density field , 2001, astro-ph/0109323.

[55]  J. Dunlop,et al.  On the black hole–bulge mass relation in active and inactive galaxies , 2001, astro-ph/0201081.

[56]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[57]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[58]  G. Kauffmann,et al.  A unified model for the evolution of galaxies and quasars , 1999, astro-ph/9906493.

[59]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[60]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[61]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .