Incorporating uncertainty in the coefficients and multipliers of an IO table: A case study

Uncertainty is a topic not examined in depth in input- output (IO) analysis, especially from an empirical approach. We propose the use of the information obtained in the surveys conducted to create the IO technical coefficients matrix to adequately take into account the inherent uncertainty it contains. We propose a Beta distribution probability as a very suitable hypothesis and we have tested it in the Andalusian IO table. We have created probability intervals for each one of the coefficients and defined associated fuzzy coefficients, which allows us to obtain an interval IO matrix and to derive first order interval multipliers. Resumen La incertidumbre es un tema que no se trata en profundidad en analisis de input- output (IO), especialmente desde un punto de vista empirico. Proponemos el uso de la informacion obtenida en los muestreos realizados para crear la matriz de coeficientes tecnicos de IO, para tener en cuenta de manera adecuada la incertidumbre inherente que contiene. Proponemos la distribucion beta como una hipotesis de distribucion de probabilidad muy apropiada, la cual hemos probado con la tabla IO de Andalucia. Hemos creado intervalos de probabilidad para cada uno de los coeficientes y definido coeficientes difusos asociados, que nos permiten obtener una matriz IO de intervalo y deducir multiplicadores de intervalo de primer orden.

[1]  Didier Dubois,et al.  Probability-Possibility Transformations, Triangular Fuzzy Sets, and Probabilistic Inequalities , 2004, Reliab. Comput..

[2]  James J. Buckley,et al.  Fuzzy input-output analysis , 1989 .

[3]  Shelby D. Gerking,et al.  Estimation of stochastic input-output models , 1976 .

[4]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[5]  M. Jerrell Interval Arithmetic for Input-output Models with Inexact Data , 1997 .

[6]  Mark F. J. Steel,et al.  Revised stochastic analysis of an input-output model , 1992 .

[7]  G. West,et al.  A Stochastic Analysis of an Input-Output Model , 1986 .

[8]  Herbert A. Simon,et al.  Note: Some Conditions of Macroeconomic Stability , 1949 .

[9]  Julija Lebedinska On another view of an inverse of an interval matrix , 2010, Soft Comput..

[10]  Malcolm J. Beynon,et al.  The elucidation of multipliers and their moments in fuzzy closed Leontief input-output systems , 2006, Fuzzy Sets Syst..

[11]  Richard E. Quandt,et al.  Probabilistic errors in the leontief system , 1958 .

[12]  Jiri Rohn,et al.  Inverse interval matrix , 1993 .

[13]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[14]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[15]  András Simonovits,et al.  A Note on the Underestimation and Overestimation of the Leontief Inverse , 1975 .

[16]  P. K. Jansen Analysis of multipliers in stochastic input-output models , 1994 .

[17]  Manfred Lenzen,et al.  A Generalized Input-Output Multiplier Calculus for Australia , 2001 .

[18]  M. Munday,et al.  An Aggregated Regional Economic Input–Output Analysis within a Fuzzy Environment , 2007 .

[19]  Erik Dietzenbacher Multiplier Estimates: To Bias or Not to Bias? , 2006 .

[20]  M. Beynon,et al.  Ranking sectors using fuzzy output multipliers , 2005 .

[21]  Robert M. Solow,et al.  On the Structure of Linear Models , 1952 .

[22]  Thijs ten Raa,et al.  Stochastic Analysis of Input-Output Multipliers on the Basis of Use and Make Tables , 2007 .

[23]  Shelby D. Gerking,et al.  Input-Output as a Simple Econometric Model , 1976 .