The Origin of Stress in the Solid Electrolyte Interphase on Carbon Electrodes for Li Ion Batteries

[1]  Minoru Inaba,et al.  Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution , 2001 .

[2]  Doron Aurbach,et al.  Capacity fading of lithiated graphite electrodes studied by a combination of electroanalytical methods, Raman spectroscopy and SEM , 2005 .

[3]  Brian W. Sheldon,et al.  Monitoring Stress in Thin Films During Processing , 2003 .

[4]  Oleg Borodin,et al.  Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. , 2009, The journal of physical chemistry. B.

[5]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[6]  Michael Holzapfel,et al.  High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries , 2005 .

[7]  S. J. Hearne,et al.  Mechanisms inducing compressive stress during electrodeposition of Ni , 2005 .

[8]  Li-Jun Wan,et al.  Spin-coated silicon nanoparticle/graphene electrode as a binder-free anode for high-performance lithium-ion batteries , 2012, Nano Research.

[9]  T. Abe,et al.  Surface film formation on a graphite negative electrode in lithium-ion batteries: AFM study on the effects of co-solvents in ethylene carbonate-based solutions , 2002 .

[10]  J. Dahn,et al.  Measurement of Parasitic Reactions in Li Ion Cells by Electrochemical Calorimetry , 2012 .

[11]  Xingcheng Xiao,et al.  Thickness effects on the lithiation of amorphous silicon thin films , 2011 .

[12]  L. Freund,et al.  Origin of compressive residual stress in polycrystalline thin films. , 2002, Physical review letters.

[13]  Petr Novák,et al.  The complex electrochemistry of graphite electrodes in lithium-ion batteries , 2001 .

[14]  R. Kostecki,et al.  Diagnostic evaluation of detrimental phenomena in 13C-labeled composite cathodes for Li-ion batteries , 2007 .

[15]  Adri C. T. van Duin,et al.  Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study , 2011 .

[16]  Competition between tensile and compressive stress creation during constrained thin film island coalescence , 2007 .

[17]  Jiayan Luo,et al.  Crumpled Graphene-Encapsulated Si Nanoparticles for Lithium Ion Battery Anodes. , 2012, The journal of physical chemistry letters.

[18]  Peng Lu,et al.  Lithium transport within the solid electrolyte interphase , 2011 .

[19]  G. Taillades,et al.  Metal-based very thin film anodes for lithium ion microbatteries , 2002 .

[20]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[21]  Rachid Yazami,et al.  Surface chemistry and lithium storage capability of the graphite-lithium electrode , 1999 .

[22]  Xuemei Zhao,et al.  A High Precision Coulometry Study of the SEI Growth in Li/Graphite Cells , 2011 .

[23]  E. Peled,et al.  Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes , 1997 .

[24]  G. Lu,et al.  Synthesis of ordered nanoporous carbon and its application in Li-ion battery , 2006 .

[25]  P. Novák,et al.  Chemical surface treatments for decreasing irreversible charge loss and preventing exfoliation of graphite in Li-ion batteries , 2012 .

[26]  S. Trussler,et al.  Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries , 2010 .

[27]  M. Inaba,et al.  Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate , 1997 .

[28]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[29]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[30]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[31]  B. Sheldon,et al.  Microstructural Origins of Saccharin-Induced Stress Reduction in Electrodeposited Ni , 2009 .

[32]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[33]  Doron Aurbach,et al.  The study of lithium insertion–deinsertion processes into composite graphite electrodes by in situ atomic force microscopy (AFM) , 2002 .

[34]  Amartya Mukhopadhyay,et al.  Stress development due to surface processes in graphite electrodes for Li-ion batteries: A first report , 2012 .

[35]  R. Raj,et al.  Thermodynamic measurements pertaining to the hysteretic intercalation of lithium in polymer-derived silicon oxycarbide , 2010 .

[36]  Sehee Lee,et al.  Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li‐Ion Batteries , 2010, Advanced materials.

[37]  Diana Golodnitsky,et al.  Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies , 2001 .

[38]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[39]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[40]  Xingcheng Xiao,et al.  Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries , 2011, Advanced materials.

[41]  Petr Novák,et al.  SEI film formation on highly crystalline graphitic materials in lithium-ion batteries , 2006 .

[42]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[43]  Amartya Mukhopadhyay,et al.  Thin film graphite electrodes with low stress generation during Li-intercalation , 2011 .

[44]  John Newman,et al.  A Mathematical Model for the Lithium-Ion Negative Electrode Solid Electrolyte Interphase , 2004 .