Multimodal inverse problems: Maximum compatibility estimateand shape reconstruction

We present an optimal strategy for the relative weighting of multiple data modalities in inverse problems, and derive the maximum compatibility estimate (MCE) that corresponds to the maximum likelihood or maximum a posteriori estimates in the case of a single data mode. MCE is not explicitly dependent on the noise levels, scale factors or numbers of data points of the complementary data modes, and can be determined without the mode weight parameters. We also discuss discontinuities in the solution estimates in multimodal inverse problems, and derive a corresponding self-consistency criterion. As a case study, we consider the problem of reconstructing the shape and the spin state of a body in $\R^3$ from the boundary curves (profiles) and volumes (brightness values) of its generalized projections in $\R^2$. We also show that the generalized profiles uniquely determine a large class of shapes. We present a solution method well suitable for adaptive optics images in particular, and discuss various choices of regularization functions.

[1]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[2]  M. Kaasalainen,et al.  Inverse problems of NEO photometry: Imaging the NEO population , 2006, Proceedings of the International Astronomical Union.

[3]  Simon R. Arridge,et al.  Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method , 2006 .

[4]  Mikko Kaasalainen,et al.  Inverse problems of generalized projection operators , 2006 .

[5]  M. Kaasalainen,et al.  Optimization Methods for Asteroid Lightcurve Inversion: I. Shape Determination , 2001 .

[6]  H. Engl,et al.  Using the L--curve for determining optimal regularization parameters , 1994 .

[7]  Karri Muinonen,et al.  Optimization Methods for Asteroid Lightcurve Inversion. II. The Complete Inverse Problem , 2001 .

[8]  Thierry Fusco,et al.  Physical Properties of (2) Pallas , 2009, 0912.3626.

[9]  M. Kaasalainen Interpretation of lightcurves of precessing asteroids , 2001 .

[10]  M. Kaasalainen,et al.  Photometric signatures of highly nonconvex and binary asteroids , 2003 .

[11]  Thierry Fusco,et al.  Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres , 2007, 0711.1152.

[12]  S. Debei,et al.  E-Type Asteroid (2867) Steins as Imaged by OSIRIS on Board Rosetta , 2010, Science.

[13]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[14]  M. Kaasalainen,et al.  Acceleration of the rotation of asteroid 1862 Apollo by radiation torques , 2007, Nature.

[15]  M. Hanke Limitations of the L-curve method in ill-posed problems , 1996 .

[16]  Pietro Perona,et al.  3D Reconstruction by Shadow Carving: Theory and Practical Evaluation , 2007, International Journal of Computer Vision.

[17]  R. Roy,et al.  New insights on the binary asteroid 121 Hermione , 2009, 0904.2033.

[18]  J Berthier,et al.  Shape, size and multiplicity of main-belt asteroids I. Keck Adaptive Optics survey. , 2006, Icarus.

[19]  A. Dobrovolskis,et al.  INERTIA OF ANY POLYHEDRON , 1996 .

[20]  Mikko Kaasalainen,et al.  Interpretation of lightcurves of atmosphereless bodies. I : General theory and new inversion schemes , 1992 .

[21]  Takeo Kanade,et al.  Shape-From-Silhouette Across Time Part I: Theory and Algorithms , 2005, International Journal of Computer Vision.

[22]  E. Miller,et al.  Efficient determination of multiple regularization parameters in a generalized L-curve framework , 2002 .

[23]  Andrea Bottino,et al.  Introducing a New Problem: Shape-from-Silhouette when the Relative Positions of the Viewpoints is Unknown , 2003, IEEE Trans. Pattern Anal. Mach. Intell..