High precision nickel isotope measurements of early Solar System materials and the origin of nucleosynthetic disk variability

[1]  C. Vollmer,et al.  Iron-60 in the Early Solar System Revisited: Insights from In Situ Isotope Analysis of Chondritic Troilite , 2022, The Astrophysical Journal.

[2]  L. Mayer,et al.  Presolar grain dynamics: creating nucleosynthetic variations through a combination of drag and viscous evolution , 2022, 2203.08620.

[3]  Nan Liu Presolar Grains , 2021, Oxford Research Encyclopedia of Planetary Science.

[4]  A. Morbidelli,et al.  Terrestrial planet formation from lost inner solar system material , 2021, Science advances.

[5]  T. Kleine,et al.  Earth's accretion inferred from iron isotopic anomalies of supernova nuclear statistical equilibrium origin , 2021, Earth and Planetary Science Letters.

[6]  M. Bizzarro,et al.  Isotope Dichotomy from Solar Protoplanetary Disk Processing of 150Nd-rich Stellar Ejecta , 2021, The Astrophysical Journal Letters.

[7]  A. Bouvier,et al.  Evidence from achondrites for a temporal change in Nd nucleosynthetic anomalies within the first 1.5 million years of the inner solar system formation , 2021, Earth and Planetary Science Letters.

[8]  J. Dra̧żkowska,et al.  Bifurcation of planetary building blocks during Solar System formation , 2021, Science.

[9]  Shichun Huang,et al.  Nickel isotopic evidence for late-stage accretion of Mercury-like differentiated planetary embryos , 2021, Nature communications.

[10]  I. Minchev,et al.  Mass and metallicity distribution of parent AGB stars of presolar SiC , 2020, Astronomy & Astrophysics.

[11]  C. Kobayashi,et al.  The Origin of Elements from Carbon to Uranium , 2020, The Astrophysical Journal.

[12]  T. Elliott,et al.  The non-chondritic Ni isotope composition of Earth’s mantle , 2020, Geochimica et Cosmochimica Acta.

[13]  L. Borg,et al.  The great isotopic dichotomy of the early Solar System , 2019, Nature Astronomy.

[14]  M. Schönbächler,et al.  The origin of s-process isotope heterogeneity in the solar protoplanetary disk , 2019, Nature Astronomy.

[15]  N. Dauphas,et al.  Evidence of presolar SiC in the Allende Curious Marie calcium aluminum rich inclusion. , 2019, Nature astronomy.

[16]  M. Bizzarro,et al.  Iron isotope evidence for very rapid accretion and differentiation of the proto-Earth , 2019, Science Advances.

[17]  R. Hirschi,et al.  NuGrid stellar data set – III. Updated low-mass AGB models and s-process nucleosynthesis with metallicities Z= 0.01, Z = 0.02, and Z = 0.03 , 2019, Monthly Notices of the Royal Astronomical Society.

[18]  J. Cuzzi,et al.  Origin of the non-carbonaceous–carbonaceous meteorite dichotomy , 2019, Earth and Planetary Science Letters.

[19]  T. Kleine,et al.  A Distinct Nucleosynthetic Heritage for Early Solar System Solids Recorded by Ni Isotope Signatures , 2018, The Astrophysical Journal.

[20]  M. Bizzarro,et al.  Multi-element ion-exchange chromatography and high-precision MC-ICP-MS isotope analysis of Mg and Ti from sub-mm-sized meteorite inclusions , 2018 .

[21]  M. Bizzarro,et al.  Isotopic evolution of the protoplanetary disk and the building blocks of Earth and Moon , 2018, Nature.

[22]  K. Nomoto,et al.  Explosive Nucleosynthesis in Near-Chandrasekhar Mass White Dwarf Models for Type Iax Supernovae: Dependence on Model Parameters , 2017, The Astrophysical Journal.

[23]  T. Kleine,et al.  Age of Jupiter inferred from the distinct genetics and formation times of meteorites , 2017, Proceedings of the National Academy of Sciences.

[24]  J. Lattanzio,et al.  Super-AGB Stars and their Role as Electron Capture Supernova Progenitors , 2017, Publications of the Astronomical Society of Australia.

[25]  A. Kerr,et al.  Nickel isotopic composition of the mantle , 2017 .

[26]  N. Dauphas The isotopic nature of the Earth’s accreting material through time , 2017, Nature.

[27]  S. Cristallo,et al.  CONSTRAINTS OF THE PHYSICS OF LOW-MASS AGB STARS FROM CH AND CEMP STARS , 2016, 1610.05475.

[28]  D. Lauretta,et al.  Heterogeneous histories of Ni‐bearing pyrrhotite and pentlandite grains in the CI chondrites Orgueil and Alais , 2016 .

[29]  M. Bizzarro,et al.  TRACKING THE DISTRIBUTION OF 26Al AND 60Fe DURING THE EARLY PHASES OF STAR AND DISK EVOLUTION , 2016, 1605.05008.

[30]  M. Bizzarro,et al.  Chromatographic speciation of Cr(III)-species, inter-species equilibrium isotope fractionation and improved chemical purification strategies for high-precision isotope analysis. , 2016, Journal of chromatography. A.

[31]  J. Ullmann,et al.  The $^{63}$Ni(n,$γ$) cross section measured with DANCE , 2015, 1512.02263.

[32]  F. Vanhaecke,et al.  Development of an isolation procedure and MC-ICP-MS measurement protocol for the study of stable isotope ratio variations of nickel , 2015 .

[33]  M. Bizzarro,et al.  Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events. , 2015, Geochimica et cosmochimica acta.

[34]  M. Bizzarro,et al.  Precise measurement of chromium isotopes by MC-ICPMS. , 2014, Journal of Analytical Atomic Spectrometry.

[35]  N. Dauphas,et al.  60Fe–60Ni chronology of core formation in Mars , 2014, 1401.1830.

[36]  L. Borg,et al.  Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis , 2013, Proceedings of the National Academy of Sciences.

[37]  K. Nomoto,et al.  Nucleosynthesis in Stars and the Chemical Enrichment of Galaxies , 2013 .

[38]  Chris L. Fryer,et al.  NUGRID STELLAR DATA SET. I. STELLAR YIELDS FROM H TO BI FOR STARS WITH METALLICITIES Z = 0.02 and Z = 0.01 , 2013, 1307.6961.

[39]  H. Janka,et al.  ELECTRON-CAPTURE SUPERNOVAE AS ORIGIN OF 48Ca , 2013, 1302.0929.

[40]  M. Bizzarro,et al.  IDENTIFICATION OF AN 84Sr-DEPLETED CARRIER IN PRIMITIVE METEORITES AND IMPLICATIONS FOR THERMAL PROCESSING IN THE SOLAR PROTOPLANETARY DISK , 2013 .

[41]  N. Dauphas,et al.  Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk , 2012, 1212.1490.

[42]  Mei Wang,et al.  The NUBASE2016 evaluation of nuclear properties , 2012 .

[43]  M. Bizzarro,et al.  The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk , 2012, Science.

[44]  T. Elliott,et al.  NEUTRON-POOR NICKEL ISOTOPE ANOMALIES IN METEORITES , 2012 .

[45]  D. Günther,et al.  Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies , 2012 .

[46]  T. Elliott,et al.  Confirmation of mass-independent Ni isotopic variability in iron meteorites , 2011 .

[47]  P. H. Warren,et al.  Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites , 2011 .

[48]  M. Bizzarro,et al.  EVIDENCE FOR MAGNESIUM ISOTOPE HETEROGENEITY IN THE SOLAR PROTOPLANETARY DISK , 2011 .

[49]  M. Bizzarro,et al.  High-precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC-ICPMS—implications for the relative and absolute Mg-isotope composition of the bulk silicate Earth , 2011 .

[50]  H. Janka,et al.  ELECTRON-CAPTURE SUPERNOVAE AS THE ORIGIN OF ELEMENTS BEYOND IRON , 2010, 1009.1000.

[51]  A. Pack,et al.  IRON-60 HETEROGENEITY AND INCOMPLETE ISOTOPE MIXING IN THE EARLY SOLAR SYSTEM , 2010 .

[52]  N. Murray STAR FORMATION EFFICIENCIES AND LIFETIMES OF GIANT MOLECULAR CLOUDS IN THE MILKY WAY , 2010, 1007.3270.

[53]  W. Hillebrandt,et al.  NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS , 2010, 1002.2153.

[54]  D. DePaolo,et al.  CALCIUM ISOTOPE COMPOSITION OF METEORITES, EARTH, AND MARS , 2009 .

[55]  C. House,et al.  A biomarker based on the stable isotopes of nickel , 2009, Proceedings of the National Academy of Sciences.

[56]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[57]  R. Gallino,et al.  Iron and Nickel Isotopic Ratios in Presolar SiC Grains , 2008 .

[58]  T. Elliott,et al.  Nickel isotope heterogeneity in the early Solar System , 2008 .

[59]  A. Davis,et al.  Iron 60 Evidence for Early Injection and Efficient Mixing of Stellar Debris in the Protosolar Nebula , 2008, 0805.2607.

[60]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[61]  D. Günther,et al.  Correlated Iron 60, Nickel 62, and Zirconium 96 in Refractory Inclusions and the Origin of the Solar System , 2007 .

[62]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[63]  D. Lauretta,et al.  Mineralogy and texture of Fe-Ni sulfides in CI1 chondrites: Clues to the extent of aqueous alteration on the CI1 parent body , 2005 .

[64]  Andrew M. Davis,et al.  The cosmic molybdenum–ruthenium isotope correlation , 2004 .

[65]  M. Reinecke,et al.  Nucleosynthesis in multi-dimensional SN Ia explosions , 2004, astro-ph/0406281.

[66]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[67]  Usa,et al.  Nucleosynthesis in Massive Stars with Improved Nuclear and Stellar Physics , 2001, astro-ph/0112478.

[68]  Friedrich-Karl Thielemann,et al.  Silicon Burning. II. Quasi-Equilibrium and Explosive Burning , 1998, astro-ph/9808203.

[69]  S. Woosley Neutron-rich Nucleosynthesis in Carbon Deflagration Supernovae , 1997 .

[70]  B. Meyer,et al.  48Ca Production in Matter Expanding from High Temperature and Density , 1996 .

[71]  I. L. Barnes,et al.  Absolute Isotopic Abundance Ratios and Atomic Weight of a Reference Sample of Nickel , 1989, Journal of research of the National Institute of Standards and Technology.

[72]  J. Birck,et al.  Nickel and chromium isotopes in Allende inclusions , 1988 .

[73]  T. Shimamura,et al.  Ni isotopic compositions in Allende and other meteorites , 1983 .

[74]  M. Nazarov,et al.  Efremovka Cais: Major and Trace Element Chemistry , 1982 .

[75]  J. Truran,et al.  The supernova trigger for formation of the solar system , 1977 .

[76]  S. Woosley,et al.  The Explosive Burning of Oxygen and Silicon , 1973 .

[77]  B. Meyer,et al.  Iron and Nickel Isotopes in IID and IVB Iron Meteorites: Evidence for Admixture of an SN II Component and Implications for the Initial Abundance of 60Fe , 2021 .

[78]  K. Nomoto,et al.  Explosive Nucleosynthesis in Near-Chandrasekhar-mass White Dwarf Models for Type Ia Supernovae: Dependence on Model Parameters , 2018 .

[79]  T. Elliott,et al.  The Isotope Geochemistry of Ni , 2017 .

[80]  E. Scott,et al.  Chondrites and Their Components , 2014 .

[81]  A. Brearley,et al.  Metasomatism in the Early Solar System: The Record from Chondritic Meteorites , 2013 .

[82]  M. Bizzarro,et al.  Calcium isotope measurement by combined HR-MC-ICPMS and TIMS , 2012 .

[83]  B. Fegley,et al.  Condensation Chemistry of Circumstellar Grains , 1999 .

[84]  S. Woosley,et al.  EVOLUTION AND EXPLOSION OF MASSIVE STARS * , 1978, Reviews of Modern Physics.