Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity.

We demonstrate 0.85 W of power in a single longitudinal mode at 1066 nm from a Nd:GdVO(4) laser. The laser consists of only two components, the gain medium and a volume Bragg grating in glass, in a simple linear cavity comprising a combination of a Fabry-Perot cavity and a narrowband filter. Thanks to the narrowband Bragg grating, the single longitudinal mode is maintained for a cavity length up to 8 mm, while a continuous tuning of 25 GHz is achieved for a shorter cavity and lower power.

[1]  Dobryna Zalvidea,et al.  Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings. , 2006, Optics express.

[2]  Fredrik Laurell,et al.  Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating. , 2006, Optics letters.

[3]  Vadim Smirnov,et al.  Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror. , 2006, Optics letters.

[4]  Fredrik Laurell,et al.  Narrowband bulk Bragg grating optical parametric oscillator. , 2005, Optics letters.

[5]  E. D. Melnik,et al.  Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. , 2004, Optics letters.

[6]  L. Glebov,et al.  High-efficiency bragg gratings in photothermorefractive glass. , 1999, Applied optics.

[7]  Cheng,et al.  Experimental Observation of a Large Excess Quantum Noise Factor in the Linewidth of a Laser Oscillator Having Nonorthogonal Modes. , 1996, Physical review letters.

[8]  M. Ohtsu,et al.  High power diode-laser-pumped twisted-mode Nd:YAG laser , 1994, IEEE Photonics Technology Letters.

[9]  J. Zayhowski,et al.  Limits imposed by spatial hole burning on the single-mode operation of standing-wave laser cavities. , 1990, Optics letters.

[10]  Siegman Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators. , 1989, Physical review. A, General physics.

[11]  P. Peuser,et al.  High power, CW single-frequency, TEM/sub 00/, diode-laser-pumped Nd:YAG laser , 1988 .

[12]  R. Byer,et al.  Monolithic, unidirectional single-mode Nd:YAG ring laser. , 1985, Optics letters.

[13]  H. G. Danielmeyer,et al.  ELECTRO‐OPTIC ELIMINATION OF SPATIAL HOLE BURNING IN LASERS , 1970 .

[14]  H. G. Danielmeyer Stabilized efficient single-frequency Nd:YAG laser , 1970 .

[15]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .

[16]  H. Haus,et al.  On the "Excess spontaneous emission factor" in gain-guided laser amplifiers , 1985 .