A diarylethene cocrystal that converts light into mechanical work.

The photomechancial effect of a rectangular plate two-component cocrystal composed of a photochromic diarylethene derivative, 1,2-bis(2-methyl-5-(1-naphthyl)-3-thienyl)perfluorocyclopentene (1o), and perfluoronaphthalene (FN) has been examined. The crystal of 1o·FN with the size of 1-5 mm in length exhibits reversible bending motion upon alternate irradiation with ultraviolet (UV) and visible light. The reversible bending could be repeated over 250 times. In situ X-ray crystallographic analysis revealed that the deformation of the crystal is due to the elongation of the b-axis of the unit cell, which corresponds to the long axis of the plate crystal, induced by the shape change of component diarylethene molecules upon photocyclization. The bending motion was observed even at 4.7 K, and dynamic measurement of the bending proved that the anisotropic expansion of the crystal takes place in the microsecond time scale at the low temperature. Molecular crystal cantilevers made of 1o·FN can lift metal balls, the weight of which is 200-600 times heavier than the weight of the crystal, upon UV irradiation. The maximum stress generated by UV irradiation was estimated to be 44 MPa, which is 100 times larger than that of muscles (∼0.3 MPa) and comparable to that of piezoelectric crystals, such as lead zirconate titanate (PZT) (∼50 MPa).

[1]  G. Sheldrick Phase annealing in SHELX-90: direct methods for larger structures , 1990 .

[2]  T. Ikeda,et al.  Photomobile polymer materials: towards light-driven plastic motors. , 2008, Angewandte Chemie.

[3]  K. Harris,et al.  Glassy photomechanical liquid-crystal network actuators for microscale devices , 2007, The European physical journal. E, Soft matter.

[4]  M. Shelley,et al.  Fast liquid-crystal elastomer swims into the dark , 2004, Nature materials.

[5]  Christopher J. Bardeen,et al.  Reversible Photoinduced Shape Changes of Crystalline Organic Nanorods , 2007 .

[6]  S. Kobatake,et al.  Absolute asymmetric photocyclization in chiral diarylethene co-crystals with octafluoronaphthalene. , 2008, Chemical communications.

[7]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[8]  Yanlei Yu,et al.  Photomechanics of liquid-crystalline elastomers and other polymers. , 2007, Angewandte Chemie.

[9]  S. Takeda,et al.  Supramolecular rotor: adamantylammonium([18]crown-6) in [Ni(dmit)2]- salt. , 2007, Inorganic chemistry.

[10]  Y. Gartstein,et al.  Giant-Stroke, Superelastic Carbon Nanotube Aerogel Muscles , 2009, Science.

[11]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: encoding supramolecular dynamics into molecular structure. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Al‐Kaysi,et al.  Photochemically driven shape changes of crystalline organic nanorods. , 2006, Journal of the American Chemical Society.

[13]  P. Naumov,et al.  Topochemistry and photomechanical effects in crystals of green fluorescent protein-like chromophores: effects of hydrogen bonding and crystal packing. , 2010, Journal of the American Chemical Society.

[14]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[15]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[16]  M. Irie,et al.  Photochromism of diarylethene molecules and crystals , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[17]  K. A. Padmanabhan,et al.  Isostructurality, polymorphism and mechanical properties of some hexahalogenated benzenes: the nature of halogen...halogen interactions. , 2006, Chemistry.

[18]  C. R. Patrick,et al.  A Molecular Complex of Benzene and Hexafluorobenzene , 1960, Nature.

[19]  O. Miyatake,et al.  Blocked photochromism of diarylethenes , 1992 .

[20]  Y. Nakayama,et al.  Thermally Irreversible Photochromic Systems. Reversible Photocyclization of 1,2-Bis(benzo[b]thiophen-3-yl)ethene Derivatives , 1990 .

[21]  Masahiro Irie,et al.  Photocyclization/cycloreversion quantum yields of diarylethenes in single crystals , 2002 .

[22]  Masahiro Irie,et al.  X-Ray Crystallographic Study on Single-Crystalline Photochromism of 1,2-Bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene , 2000 .

[23]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[24]  S. Takeda,et al.  Multirotations of (anilinium)([18]crown-6) supramolecular cation structure in magnetic salt of [Ni(dmit)2]-. , 2007, Chemistry, an Asian journal.

[25]  J. C. Price,et al.  Dipolar rotor-rotor interactions in a difluorobenzene molecular rotor crystal , 2006 .

[26]  Michael M. Pollard,et al.  A Reversible, Unidirectional Molecular Rotary Motor Driven by Chemical Energy , 2005, Science.

[27]  M. Garcia‐Garibay,et al.  Solid-state photodecarbonylation of diphenylcyclopropenone: a quantum chain process made possible by ultrafast energy transfer. , 2008, Journal of the American Chemical Society.

[28]  Masahiro Irie,et al.  Single-Crystalline Photochromism of Diarylethenes , 2004 .

[29]  M. Garcia‐Garibay Molecular crystals on the move: from single-crystal-to-single-crystal photoreactions to molecular machinery. , 2007, Angewandte Chemie.

[30]  J. F. Stoddart,et al.  Acid-base actuation of [c2]daisy chains. , 2009, Journal of the American Chemical Society.

[31]  N. Tamai,et al.  Picosecond laser photolysis studies on a photochromic dithienylethene in solution and in crystalline phases , 1997 .

[32]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[33]  Masahiro Irie,et al.  Single-crystalline photochromism of diarylethenes: reactivity-structure relationship. , 2002, Chemical communications.

[34]  P. York,et al.  The relationship between Young's modulus of elasticity of organic solids and their molecular structure , 1991 .

[35]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[36]  S. Kobatake,et al.  Crystal engineering of photochromic diarylethene single crystals. , 2004, Chemical record.

[37]  Ben L. Feringa,et al.  Unidirectional molecular motor on a gold surface , 2005, Nature.

[38]  Richard A. Silva,et al.  Unidirectional rotary motion in a molecular system , 1999, Nature.

[39]  M. Garcia‐Garibay,et al.  Molecular "compasses" and "gyroscopes". I. Expedient synthesis and solid state dynamics of an open rotor with a bis(triarylmethyl) frame. , 2002, Journal of the American Chemical Society.

[40]  Daisuke Sato,et al.  Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. , 2009, Nature materials.

[41]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[42]  V. Lobastov,et al.  Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy. , 2007, Angewandte Chemie.

[43]  Takayoshi Nakamura,et al.  Supramolecular approach for solid state Brownian rotators. , 2008, Dalton transactions.

[44]  H. Koshima,et al.  Mechanical motion of azobenzene crystals upon photoirradiation. , 2009, Journal of the American Chemical Society.

[45]  A. Zewail,et al.  Nanomechanical motions of cantilevers: direct imaging in real space and time with 4D electron microscopy. , 2009, Nano letters.

[46]  R. Grubbs,et al.  Switching and extension of a [c2]daisy-chain dimer polymer. , 2009, Journal of the American Chemical Society.

[47]  Chih-Ming Ho,et al.  Linear artificial molecular muscles. , 2005, Journal of the American Chemical Society.

[48]  Michael Whittaker,et al.  A 35-Å movement of smooth muscle myosin on ADP release , 1995, Nature.

[49]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[50]  M. Irie Photochromism and Molecular Mechanical Devices , 2008 .

[51]  Ernest Merian,et al.  Steric Factors Influencing the Dyeing of Hydrophobic. Fibers , 1966 .

[52]  K. A. Padmanabhan,et al.  Structure−Property Correlations in Bending and Brittle Organic Crystals , 2006 .

[53]  M. Irie,et al.  Photoinduced shape changes of diarylethene single crystals: correlation between shape changes and molecular packing , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[54]  G. A. Abakumov,et al.  Photomechanical properties of rhodium(I)-semiquinone complexes. The structure, spectroscopy, and magnetism of (3,6-di-tert-butyl-1,2-semiquinonato)dicarbonylrhodium(I) , 1992 .

[55]  Francesco Zerbetto,et al.  Unidirectional rotation in a mechanically interlocked molecular rotor , 2003, Nature.

[56]  Robert D. Horansky,et al.  Dielectric response of a dipolar molecular rotor crystal , 2005 .

[57]  M. Garcia‐Garibay,et al.  Crystalline molecular machines: a quest toward solid-state dynamics and function. , 2006, Accounts of chemical research.

[58]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[59]  M. Garcia‐Garibay,et al.  Photonic amplification by a singlet-state quantum chain reaction in the photodecarbonylation of crystalline diarylcyclopropenones. , 2009, Journal of the American Chemical Society.

[60]  E. Boldyreva Intramolecular Linkage Isomerization in the Crystals of Some Co(III) - Ammine Complexes - A Link Between Inorganic and Organic Solid State Chemistry , 1994 .

[61]  A. Yamaguchi,et al.  Reversible phase transitions in polymer gels induced by radiation forces , 2000, Nature.

[62]  K. A. Padmanabhan,et al.  Structural basis for bending of organic crystals. , 2005, Chemical communications.

[63]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[64]  Tomoyuki Ishikawa,et al.  Rapid and reversible shape changes of molecular crystals on photoirradiation , 2007, Nature.

[65]  T. Kajiwara,et al.  Dynamic Mechanical Behaviour of Organic Molecular Crystals. I , 1967 .

[66]  M. Irie,et al.  Photochromism of diarylethene single crystals: crystal structures and photochromic performance. , 2005, Chemical communications.

[67]  Euan R. Kay,et al.  A molecular information ratchet , 2007, Nature.

[68]  H. Finkelmann,et al.  A new opto-mechanical effect in solids. , 2001, Physical review letters.

[69]  S. Kobatake,et al.  Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. , 2001, Science.

[70]  IrieMasahiro,et al.  X-Ray Crystallographic Study on Single-Crystalline Photochromism of 1,2-Bis(2,5-dimethyl-3-thienyl)perfluorocyclopentene , 2001 .

[71]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[72]  A. Lendlein,et al.  Polymers Move in Response to Light , 2006 .

[73]  Masahiro Irie,et al.  Photochromism of 1,2-Bis(2-methyl-5-phenyl-3-thienyl)perfluorocyclopentene in a Single-Crystalline Phase , 2000 .

[74]  C. Bardeen,et al.  Using two-photon excitation to control bending motions in molecular-crystal nanorods. , 2009, Small.

[75]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[76]  K. Matsuda,et al.  Absolute asymmetric photocyclization of a photochromic diarylethene derivative in single crystals. , 2003, Angewandte Chemie.

[77]  K. Harris,et al.  Large amplitude light-induced motion in high elastic modulus polymer actuators , 2005 .

[78]  B. Feringa,et al.  Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. , 2008, Chemical communications.

[79]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.