Impact of strip winding tension on ultracrystalline magnetic core for current transformer

[1]  K. Qiu,et al.  Advances in Fe-based amorphous/nanocrystalline alloys , 2022, Journal of Applied Physics.

[2]  Akihiko Kato,et al.  Effect of tensile stress during ultra-rapid annealing on the soft magnetic properties of Fe-B based nanocrystalline alloys , 2022, Journal of Alloys and Compounds.

[3]  Shao-xiong Zhou,et al.  Winding tension on deformation and dynamic magnetic properties of finemet-type toroidal cores , 2022, Journal of Materials Science: Materials in Electronics.

[4]  D. Raabe,et al.  A mechanically strong and ductile soft magnet with extremely low coercivity , 2022, Nature.

[5]  E. Cazacu,et al.  Estimation of Energy Losses in Nanocrystalline FINEMET Alloys Working at High Frequency , 2021, Materials.

[6]  V. N. Thuc,et al.  Hierarchical geometric designs for Fe-based amorphous materials with tunable soft magnetic properties , 2021, Journal of Alloys and Compounds.

[7]  Min Jung Lee,et al.  Characteristics of large-area porous media burner applicable to direct-fired non-oxidizing annealing furnace , 2021 .

[8]  D. Greve,et al.  Electromagnetic assisted thermal processing of amorphous and nanocrystalline soft magnetic alloys: Fundamentals and advances , 2021 .

[9]  Jun Wang,et al.  Tailoring the microstructure, magnetic properties and interaction mechanisms of Alnico-Ta alloys by magnetic field treatment , 2020 .

[10]  X. J. Liu,et al.  Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces , 2020, Science.

[11]  L. Varga Tailoring the magnetization linearity of Finemet type nanocrystalline cores by stress induced anisotropies , 2020, Journal of Magnetism and Magnetic Materials.

[12]  Weihua Wang,et al.  Magnetic Properties in Finemet-Type Soft Magnetic Toroidal Cores Annealed under Radial Stresses , 2020 .

[13]  Y. Yang,et al.  Amorphous–nanocrystalline alloys: fabrication, properties, and applications , 2019, Materials Today Advances.

[14]  T. Monson,et al.  Soft magnetic materials for a sustainable and electrified world , 2018, Science.

[15]  M. Ohnumaa Direct evidence for structural origin of stress-induced magnetic anisotropy in Fe–Si–B–Nb–Cu nanocrystalline alloys , 2018 .

[16]  Li Zhun,et al.  Core loss analysis of Finemet type nanocrystalline alloy ribbon with different thickness , 2017 .

[17]  O. Geoffroy,et al.  Improved soft magnetic properties in nanocrystalline FeCuNbSiB Nanophy® cores by intense magnetic field annealing , 2017 .

[18]  L. Schultz,et al.  Dynamic magnetization process of nanocrystalline tape wound cores with transverse field-induced anisotropy , 2006 .

[19]  L. Schultz,et al.  Magnetization loss and domain refinement in nanocrystalline tape wound cores , 2006 .

[20]  Masaki Nakano,et al.  Origin of the magnetic anisotropy induced by stress annealing in Fe-based nanocrystalline alloy , 2005 .

[21]  H. Fukunaga,et al.  Direct evidence for structural origin of stress-induced magnetic anisotropy in Fe–Si–B–Nb–Cu nanocrystalline alloys , 2003 .

[22]  M. Nakano,et al.  High performance nanostructured cores for chock coils prepared by using creep-induced anisotropy , 2002 .

[23]  M. Nakano,et al.  Nanostructured soft magnetic material with low loss and low permeability , 2000 .

[24]  M. M. Raja,et al.  Structure and soft magnetic properties of Finemet alloys , 2000 .

[25]  R. D. De Doncker,et al.  Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[26]  G. Bertotti,et al.  Hysteresis properties of conventionally annealed and Joule-heated nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys , 1996 .