Modulating Noncovalent Cross-links with Molecular Switches.

Spiropyran molecular switches, in conjunction with transition metal ions, are shown to operate as reversible polymer cross-linkers. Solutions containing a spiropyran-functionalized polymer and transition metal ions underwent reversible thermally triggered (light-triggered) transient network formation (disruption) driven by the association (dissociation) of metal-ligand cross-links. Heat triggers metal-ion-mediated cross-linking via thermal isomerization of spiropyran to its open, merocyanine form, and exposure to visible light triggers dissociation of polymer cross-links. Cross-linking is found to depend on both the valence of the ion as well as the molar ratio of spiropyran to metal salt. We envision this to be a starting point for the design of many types of reversible, stimuli-responsive polymers, utilizing the fact that spiropyrans have been shown to respond to a variety of stimuli including heat, light, pH, and mechanical force.

[1]  R. Ewoldt,et al.  Inferring the Nonlinear Mechanisms of a Reversible Network , 2018, Macromolecules.

[2]  Johannes M. Soulages,et al.  Continuous relaxation spectra for constitutive models in medium-amplitude oscillatory shear , 2018, Journal of Rheology.

[3]  Sébastien Perrier,et al.  50th Anniversary Perspective: RAFT Polymerization—A User Guide , 2017 .

[4]  C. Keplinger,et al.  A highly stretchable autonomous self-healing elastomer. , 2016, Nature chemistry.

[5]  Huan Zhang,et al.  Mechanochromism and Mechanical-Force-Triggered Cross-Linking from a Single Reactive Moiety Incorporated into Polymer Chains. , 2016, Angewandte Chemie.

[6]  Olivia R. Cromwell,et al.  Self-healing multiphase polymers via dynamic metal-ligand interactions. , 2014, Journal of the American Chemical Society.

[7]  Zhigang Suo,et al.  Hybrid Hydrogels with Extremely High Stiffness and Toughness. , 2014, ACS macro letters.

[8]  Jie Yan,et al.  Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation , 2014, Scientific Reports.

[9]  V. Kišš,et al.  Nanoporous frameworks exhibiting multiple stimuli responsiveness , 2014, Nature Communications.

[10]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[11]  Aaron M Kushner,et al.  Multiphase design of autonomic self-healing thermoplastic elastomers. , 2012, Nature chemistry.

[12]  K. Burke,et al.  Thermosolvatochromism of nitrospiropyran and merocyanine free and bound to cyclodextrin. , 2012, The journal of physical chemistry. B.

[13]  J. Locklin,et al.  Fabrication of spiropyran-containing thin film sensors used for the simultaneous identification of multiple metal ions. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[14]  Yasuhiro Shiraishi,et al.  Entropy-driven thermal isomerization of spiropyran in viscous media. , 2011, The journal of physical chemistry. A.

[15]  Henrik Birkedal,et al.  pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli , 2011, Proceedings of the National Academy of Sciences.

[16]  N. Mosey,et al.  Spirooxazine to merooxazine interconversion in the presence and absence of zinc: approach to a bistable photochemical switch. , 2010, The journal of physical chemistry. A.

[17]  Paul V Braun,et al.  Force-induced redistribution of a chemical equilibrium. , 2010, Journal of the American Chemical Society.

[18]  Yasuhiro Shiraishi,et al.  Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication. , 2010, Physical chemistry chemical physics : PCCP.

[19]  C. Aakeröy,et al.  The role of metal ions and counterions in the switching behavior of a carboxylic acid functionalized spiropyran. , 2010, Dalton transactions.

[20]  Jason Locklin,et al.  Spectroscopic analysis of metal ion binding in spiropyran containing copolymer thin films. , 2010, Analytical chemistry.

[21]  Vladimir I Minkin,et al.  Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[22]  Mitchell T. Ong,et al.  Force-induced activation of covalent bonds in mechanoresponsive polymeric materials , 2009, Nature.

[23]  Michael P. Sheetz,et al.  Stretching Single Talin Rod Molecules Activates Vinculin Binding , 2009, Science.

[24]  Scott R White,et al.  Mechanophore-linked addition polymers. , 2007, Journal of the American Chemical Society.

[25]  Chen Yu,et al.  Elucidating the mechanisms of acidochromic spiropyran-merocyanine interconversion. , 2007, The journal of physical chemistry. A.

[26]  V. Minkin,et al.  Photo- and ionochromism of 5’-(4,5-diphenyl-1,3-oxazol-2-yl) substituted spiro[indoline-naphthopyrans] , 2006 .

[27]  Dermot Diamond,et al.  Photo-regenerable surface with potential for optical sensing , 2006 .

[28]  G. McKinley,et al.  Rheology and Dynamics of Associative Polymers in Shear and Extension: Theory and Experiments , 2006 .

[29]  James T. C. Wojtyk,et al.  Modulation of the Spiropyran−Merocyanine Reversion via Metal-Ion Selective Complexation: Trapping of the “Transient” cis-Merocyanine , 2001 .

[30]  Y. Tsukahara,et al.  Bulk Properties of Poly(macromonomer)s of Increased Backbone and Branch Lengths , 2001 .

[31]  Michael Rubinstein,et al.  Dynamics of Entangled Solutions of Associating Polymers , 2001 .

[32]  Stuart L. Cooper,et al.  Models of shear-thickening behavior in physically cross-linked networks , 1993 .

[33]  G. Giusti,et al.  Comparative photodegradation study between spiro[indoline—oxazine] and spiro[indoline—pyran] derivatives in solution , 1993 .

[34]  Fumihiko Tanaka,et al.  Viscoelastic properties of physically crosslinked networks. 1. Transient network theory , 1992 .

[35]  A. Bose,et al.  Formation of molecular H- and J-stacks by the spiropyran-merocyanine transformation in a polymer matrix , 1987 .

[36]  F. Shvartsman,et al.  Intramolecular interactions in photochromic spiropyran-merocyanine polymers , 1984 .

[37]  W. Graessley Statistical Mechanics of Random Coil Networks , 1975 .

[38]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1970 .

[39]  J. P. Phillips,et al.  Photochromic Chelating Agents , 1965 .

[40]  P. Flory,et al.  Intrinsic Viscosity-Molecular Weight Relationships for Polyisobutylene. , 1949 .

[41]  P. Flory,et al.  Statistical Mechanics of Cross‐Linked Polymer Networks I. Rubberlike Elasticity , 1943 .

[42]  H. James,et al.  Statistical Treatment of Imperfectly Flexible Chains , 1943 .

[43]  R. Ewoldt,et al.  Experimental Challenges of Shear Rheology: How to Avoid Bad Data , 2015 .

[44]  R. Guglielmetti Chapter 8 – 4n+2 Systems: Spiropyrans , 2003 .

[45]  Helmut Görner,et al.  Complexes of spiropyran-derived merocyanines with metal ions Thermally activated and light-induced processes , 1998 .

[46]  K. Kudo,et al.  Photochromic behaviour of a spirobenzopyran chemisorbed on a colloidal silica surface , 1995 .

[47]  K. Ichimura,et al.  The role of triplet state of nitrospiropyran in their photochromic reaction , 1990 .

[48]  N. Tschoegl The Phenomenological Theory of Linear Viscoelastic Behavior , 1989 .

[49]  J. A. Duiser,et al.  Viscoelasticity of Networks Consisting of Crosslinked or Entangled Macromolecules. I. Normal Modes and Mechanical Spectra , 1966 .

[50]  E. Wiechert Gesetze der elastischen Nachwirkung für constante Temperatur , 1893 .