Forthcoming perspectives of photoelectrochromic devices: a critical review

Re-thinking our relationship with energy resources and environmental equilibrium, towards anthropogenic sustainability, calls for innovative and energetically wise technologies. Smart devices adjusting their optical behaviour depending on the environmental conditions will allow remarkable energy savings. To this end, photoelectrochromic devices (PECDs) have captured, in the last two decades, the interest of many research groups and industrial players worldwide. These devices encompass a dual behavior, being able to generate energy and, concomitantly, deliver a smart optical response. For this reason, they are the ideal skins of future buildings, capable of modulating their behavior in response to changing external stimuli, like sunlight irradiance. PECDs have a wide range of applications, from solar shading in architectural glazing to rear view mirrors in automotives, or avionics. This review article explores the different design concepts standing at the basis of the devices that have appeared so far, shedding light on future perspectives. This work takes into account R&D issues and processing constraints as well as the potential exploitation of emerging solid-state materials promising important technological progress.

[1]  Eiichi Inoue,et al.  Application of Amorphous Silicon to WO 3 Photoelectrochromic Device , 1981 .

[2]  P. Boyce,et al.  Minimum acceptable transmittance of glazing , 1995 .

[3]  Kuo-Chuan Ho,et al.  A photoelectrochromic device based on gel electrolyte with a fast switching rate , 2012 .

[4]  Satyen K. Deb,et al.  Opportunities and challenges in science and technology of WO3 for electrochromic and related applications , 2008 .

[5]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[6]  John R. Reynolds,et al.  Black to Transmissive Switching in a Pseudo Three-Electrode Electrochromic Device , 2009 .

[7]  F. Krebs,et al.  From the Bottom Up – Flexible Solid State Electrochromic Devices , 2014, Advanced materials.

[8]  Larry L. Miller,et al.  Electrochemistry and near-infrared spectra of anion radicals containing several imide or quinone groups , 1990 .

[9]  John R. Reynolds,et al.  Propylenedioxythiophene (ProDOT)–phenylene copolymers allow a yellow-to-transmissive electrochrome , 2011 .

[10]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[11]  Zuhong Lu,et al.  All-solid-state electrochromic window of prussian blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte , 1998 .

[12]  P. A. Christian,et al.  Lithium incorporation by vanadium pentoxide , 1979 .

[13]  Levent Toppare,et al.  A neutral state green polymer with a superior transmissive light blue oxidized state. , 2007, Chemical communications.

[14]  A. Koca,et al.  Electrochromism of Electropolymerized Metallophthalocyanines , 2014 .

[15]  John R. Reynolds,et al.  Electrolyte-controlled redox conductivity and n-type doping in poly(bis-EDOT-pyridine)s , 2004 .

[16]  Aris Tsangrassoulis,et al.  Comparing the energy performance of an electrochromic window under various control strategies , 2007 .

[17]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[18]  Liang Zhao,et al.  Polyaniline electrochromic devices with transparent graphene electrodes , 2009 .

[19]  Hans Desilvestro,et al.  Long-term stability of dye solar cells , 2011 .

[20]  Lianyong Su All-solid-state photoelectrochromic window with PMMA gel electrolyte , 2001, SPIE Optics + Photonics.

[21]  Evan L. Runnerstrom,et al.  Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. , 2011, Nano letters.

[22]  Henry J. Snaith,et al.  The renaissance of dye-sensitized solar cells , 2012, Nature Photonics.

[23]  Sung Jong Yoo,et al.  High Contrast Ratio and Rapid Switching Organic Polymeric Electrochromic Thin Films Based on Triarylamine Derivatives from Layer-by-Layer Assembly , 2006 .

[24]  H. Sirringhaus,et al.  All‐Inkjet‐Printed, All‐Air‐Processed Solar Cells , 2014 .

[25]  J. Reynolds,et al.  3,4-Alkylenedioxypyrroles: functionalized derivatives as monomers for new electron-rich conducting and electroactive polymers. , 2001, The Journal of organic chemistry.

[26]  Michael Bendikov,et al.  Hexyl‐Derivatized Poly(3,4‐ethylenedioxyselenophene): Novel Highly Stable Organic Electrochromic Material with High Contrast Ratio, High Coloration Efficiency, and Low‐Switching Voltage , 2009 .

[27]  Ilknur Bayrak Pehlivan,et al.  Electrochromic devices with polymer electrolytes functionalized by SiO2 and In2O3:Sn nanoparticles: Rapid coloring/bleaching dynamics and strong near-infrared absorption , 2014 .

[28]  Donald Fitzmaurice,et al.  Photoelectrochromic heterosupramolecular assemblies , 2000 .

[29]  Boris Orel,et al.  Ionic liquids in electrochromic devices , 2007 .

[30]  Chunye Xu,et al.  A novel photoelectrochromic device based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell , 2012 .

[31]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[32]  David R. Rosseinsky,et al.  Electrochromism and Electrochromic Devices , 2007 .

[33]  Evan L. Runnerstrom,et al.  Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. , 2014, Chemical communications.

[34]  David K. Benson,et al.  Chromic Mechanism in Amorphous WO 3 Films , 1997 .

[35]  Philip C. Eames,et al.  Development of electrochromic evacuated advanced glazing , 2006 .

[36]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[37]  Andreas Jonsson,et al.  Evaluation of control strategies for different smart window combinations using computer simulations , 2010 .

[38]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[39]  J. Reynolds,et al.  The donor-acceptor approach allows a black-to-transmissive switching polymeric electrochrome. , 2008, Nature materials.

[40]  F. Jonas,et al.  Conductive modifications of polymers with polypyrroles and polythiophenes , 1991 .

[41]  Vo-Van Truong,et al.  Highly-efficient electrochromic performance of nanostructured TiO2 films made by doctor blade technique , 2011 .

[42]  Adélio Rodrigues Gaspar,et al.  Evaluation of electrochromic windows impact in the energy performance of buildings in Mediterranean climates , 2014 .

[43]  Fernando Pina,et al.  Solid-state electrochromic devices using pTMC/PEO blends as polymer electrolytes , 2010 .

[44]  Xuehong Lu,et al.  Chemically cross-linked ultrathin electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous mats as ionic liquid host in electrochromic devices , 2014 .

[45]  P. Yianoulis,et al.  Development of photoelectrochromic devices for dynamic solar control in buildings , 2010 .

[46]  Cédric Plesse,et al.  A first truly all-solid state organic electrochromic device based on polymeric ionic liquids. , 2014, Chemical communications.

[47]  Chongwu Zhou,et al.  Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. , 2010, ACS nano.

[48]  B. Orel,et al.  New photoelectrochromic device , 2001 .

[49]  Tatsuo Niwa,et al.  Optical and electrochemical properties of all-solid-state transmittance-type electrochromic devices , 2010 .

[50]  Nilgun Ozer,et al.  Electrochemical properties of sol-gel deposited vanadium pentoxide films , 1997 .

[51]  C. J. M. Emmott,et al.  Environmental and economic assessment of ITO-free electrodes for organic solar cells , 2012 .

[52]  Mercouri G. Kanatzidis,et al.  V2O5 Xerogels as Hosts For Conductive Polymers. Intercalative Polymerization of Aniline, Pyrrole and 2,2’-Bithiophene. , 1989 .

[53]  Agnieszka Pawlicka,et al.  Conductivity study of a gelatin-based polymer electrolyte , 2007 .

[54]  Michele Zinzi,et al.  Office worker preferences of electrochromic windows: a pilot study , 2006 .

[55]  Fabio Favoino,et al.  The optimal thermo-optical properties and energy saving potential of adaptive glazing technologies , 2015 .

[56]  Michel A. Aegerter,et al.  All solid-state electrochromic devices with gelatin-based electrolyte , 2008 .

[57]  Ilknur Bayrak Pehlivan,et al.  [PEI–SiO2]:[LiTFSI] nanocomposite polymer electrolytes:Ion conduction and optical properties , 2012 .

[58]  Bernard Kippelen,et al.  A Vertically Integrated Solar‐Powered Electrochromic Window for Energy Efficient Buildings , 2014, Advanced materials.

[59]  Yu Wang,et al.  Graphene: Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells (Adv. Mater. 13/2011) , 2011 .

[60]  Marie Sedlaříková,et al.  Electrochromic devices employing methacrylate-based polymer electrolytes , 2009 .

[61]  Michael Grätzel Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[62]  P. Ajayan,et al.  Design Considerations for Unconventional Electrochemical Energy Storage Architectures , 2015 .

[63]  Giuseppe Chidichimo,et al.  Flexible Nano-Photo-Electrochromic Film , 2006 .

[64]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[65]  Christoph J. Brabec,et al.  Pushing efficiency limits for semitransparent perovskite solar cells , 2015 .

[66]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[67]  Arnan Mitchell,et al.  Nanostructured Tungsten Oxide – Properties, Synthesis, and Applications , 2011 .

[68]  Francesco Fiorito,et al.  Visual comfort assessment of smart photovoltachromic windows , 2013 .

[69]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[70]  Leslie Glasser,et al.  Thermodynamic clarification of the curious ferric/potassium ion exchange accompanying the electrochromic redox reactions of prussian blue, iron(III) hexacyanoferrate(II). , 2004, Journal of the American Chemical Society.

[71]  Robert B. Moore,et al.  State of understanding of nafion. , 2004, Chemical reviews.

[72]  Giuseppe Chidichimo,et al.  Fast, self-supplied, all-solid photoelectrochromic film , 2010 .

[73]  Wilfried Lövenich,et al.  Solution-deposited PEDOT for transparent conductive applications , 2011 .

[74]  Pierluigi Cossari,et al.  Perovskite photovoltachromic cells for building integration , 2015 .

[75]  C. Lampert Chromogenic smart materials , 2004 .

[76]  Yang Yang,et al.  Multilayer Transparent Top Electrode for Solution Processed Perovskite/Cu(In,Ga)(Se,S)2 Four Terminal Tandem Solar Cells. , 2015, ACS nano.

[77]  Agostino Pennisi,et al.  An electrochromic device working in absence of ion storage counterelectrode , 1995 .

[78]  John R. Reynolds,et al.  Multichromic Copolymers Based on 3,6-Bis(2-(3,4-ethylenedioxythiophene))-N-alkylcarbazole Derivatives , 2003 .

[79]  Giuseppe Gigli,et al.  Effect of lithium intercalation on the photovoltaic performances of photovoltachromic cells , 2015 .

[80]  Luis Pérez-Lombard,et al.  A review on buildings energy consumption information , 2008 .

[81]  Elvira Fortunato,et al.  Gelatin in electrochromic devices , 2010 .

[82]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[83]  Feng Liu,et al.  Single-junction polymer solar cells with high efficiency and photovoltage , 2015, Nature Photonics.

[84]  Justin A. Kerszulis,et al.  Tuning the painter's palette: subtle steric effects on spectra and colour in conjugated electrochromic polymers , 2015 .

[85]  Chien A. Nguyen,et al.  Layer-by-Layer Assembled Solid Polymer Electrolyte for Electrochromic Devices , 2011 .

[86]  Srinivasan Sampath,et al.  Hydrogel-polymer electrolytes for electrochemical capacitors: an overview , 2009 .

[87]  M. Choe,et al.  The application of graphene as electrodes in electrical and optical devices , 2012, Nanotechnology.

[88]  Giuseppe Gigli,et al.  Highly efficient smart photovoltachromic devices with tailored electrolyte composition , 2011 .

[89]  Hong Jiang,et al.  Colorless to purple-red switching electrochromic anthraquinone imides with broad visible/near-IR absorptions in the radical anion state: simulation-aided molecular design. , 2013, Chemistry, an Asian journal.

[90]  Thomas Rath,et al.  The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers. , 2015, Angewandte Chemie.

[91]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[92]  Haruki Tokumaru,et al.  The coloration of tungsten-oxide film by oxygen deficiency and its mechanism , 2008 .

[93]  Giuseppe Gigli,et al.  Smart windows for building integration: a new architecture for photovoltachromic devices. , 2014, ACS applied materials & interfaces.

[94]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[95]  Francois Pichot,et al.  Flexible Solid‐State Photoelectrochromic Windows , 1999 .

[96]  R. Salot,et al.  All inorganic thin film electrochromic device using LiPON as the ion conductor , 2016 .

[97]  P. Yianoulis,et al.  Photocoloration efficiency and stability of photoelectrochromic devices , 2013 .

[98]  Xuehong Lu,et al.  Water-processable polyaniline with covalently bonded single-walled carbon nanotubes: enhanced electrochromic properties and impedance analysis. , 2011, ACS applied materials & interfaces.

[99]  Jing Xu,et al.  Integrated smart electrochromic windows for energy saving and storage applications. , 2014, Chemical communications.

[100]  Xiao Wei Sun,et al.  A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films , 2012 .

[101]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[102]  Chih-Ming Wang,et al.  Electrochromic properties of TiO2 thin films prepared by chemical solution deposition method , 2008 .

[103]  Aldo Di Carlo,et al.  The role of printing techniques for large-area dye sensitized solar cells , 2015 .

[104]  Gregory A. Sotzing,et al.  Poly(3,4-propylenedioxythiophene)s as a Single Platform for Full Color Realization , 2011 .

[105]  Trystan Watson,et al.  Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite. , 2015, The journal of physical chemistry letters.

[106]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[107]  P. Crutzen,et al.  The Anthropocene: conceptual and historical perspectives , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[108]  Mohammad Khaja Nazeeruddin,et al.  Metal free sensitizer and catalyst for dye sensitized solar cells , 2013 .

[109]  Feng Yan,et al.  Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes , 2015, Advanced materials.

[110]  Maria Strømme,et al.  Electrochemical studies of the electron states of disordered electrochromic oxides , 2006 .

[111]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[112]  Dermot Diamond,et al.  An Electrochromic Ionic Liquid: Design, Characterization, and Performance in a Solid-State Platform , 2012, ACS applied materials & interfaces.

[113]  C. M. Lampert,et al.  Failure and degradation modes in selected solar materials: A review , 1989 .

[114]  Giuseppe Gigli,et al.  Multiscale morphology design of hybrid halide perovskites through a polymeric template. , 2015, Nanoscale.

[115]  Volker Wittwer,et al.  Performance of a solid-state photoelectrochromic device , 2004 .

[116]  Elvira Fortunato,et al.  GelatinnZn(CF3SO3)2 Polymer Electrolytes for Electrochromic Devices , 2013 .

[117]  Nripan Mathews,et al.  Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. , 2014, ACS nano.

[118]  Frederik C. Krebs,et al.  Photochemical stability of electrochromic polymers and devices , 2013 .

[119]  Wei-Ting Wu,et al.  Fast-switching photovoltachromic cells with tunable transmittance. , 2009, ACS nano.

[120]  Clemens Bechinger,et al.  Photoelectrochromic windows and displays , 1996, Nature.

[121]  A. Pennisi,et al.  Electrochromic device based on tungsten oxide and on Nnfion-H as polymeric electrolyte , 1993 .

[122]  Kuo-Chuan Ho,et al.  Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications , 2012 .

[123]  Jenq-Neng Hwang,et al.  Multicolored Electrochromism in Polymers: Structures and Devices , 2004 .

[124]  David R. Rosseinsky,et al.  Electrochromic Systems and the Prospects for Devices , 2001 .

[125]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[126]  Tracey M. Clarke,et al.  Charge photogeneration in organic solar cells. , 2010, Chemical reviews.

[127]  Wenjie Mai,et al.  Electrochromic energy storage devices , 2016 .

[128]  Hung-Ju Yen,et al.  Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications , 2012 .

[129]  C. Granqvist Oxide electrochromics: An introduction to devices and materials , 2012 .

[130]  Chunye Xu,et al.  Synthesis of a Novel Triphenylamine Derivative and Exploration of Self-powered Electrochromic Device , 2013 .

[131]  Stefano Passerini,et al.  Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives. , 2015, ChemSusChem.

[132]  Fu-Rong Chen,et al.  Electrochromic properties of nano-composite nickel oxide film , 2008 .

[133]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[134]  C. Granqvist,et al.  Advances in chromogenic materials and devices , 2010 .

[135]  Yuan Wang,et al.  Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[136]  Bruno Scrosati,et al.  Polymer electrolytes: Present, past and future , 2011 .

[137]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[138]  Fred Wudl,et al.  Red, Green, and Blue Colors in Polymeric Electrochromics , 2004 .

[139]  A. Cihaner,et al.  A neutral state yellow to navy polymer electrochrome with pyrene scaffold , 2011 .

[140]  B. Orel,et al.  Comparison of Photoelectrochromic Devices with Different Layer Configurations , 2002 .

[141]  Vernon D. Neff,et al.  Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue , 1978 .

[142]  Eleanor S. Lee,et al.  Application issues for large-area electrochromic windows in commercial buildings , 2000 .

[143]  Jouko Korppi-Tommola,et al.  A dye-sensitized solar cell driven electrochromic device , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[144]  Antonio Piccolo,et al.  Performance requirements for electrochromic smart window , 2015 .

[145]  H. Grande,et al.  Flexible viologen electrochromic devices with low operational voltages using reduced graphene oxide electrodes. , 2014, ACS applied materials & interfaces.

[146]  Laura Blasi,et al.  Chromogenic device for cystic fibrosis precocious diagnosis: A “point of care” tool for sweat test , 2016 .

[147]  F. Simone,et al.  Effect of switchable glazing on discomfort glare from windows , 2009 .

[148]  Kuo-Chuan Ho,et al.  A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film and an organic dye , 2008 .

[149]  James R. Durrant,et al.  Electron Transfer Dynamics in Dye-Sensitized Solar Cells , 2011 .

[150]  F. Krebs,et al.  Development and Manufacture of Polymer‐Based Electrochromic Devices , 2015 .

[151]  Chao Xie,et al.  Graphene Transparent Conductive Electrodes for Highly Efficient Silicon Nanostructures-Based Hybrid Heterojunction Solar Cells , 2013 .

[152]  Giuseppe Chidichimo,et al.  Photoelectrochromic switchable nematic emulsions , 2007 .

[153]  Junichi Nagai,et al.  Durability evaluation of electrochromic devices – an industry perspective , 1999 .

[154]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[155]  David R. Rosseinsky,et al.  Electrochromic materials and devices , 2015 .

[156]  Yang Wang,et al.  Nanocomposite Architecture for Rapid, Spectrally-Selective Electrochromic Modulation of Solar Transmittance. , 2015, Nano letters.

[157]  Ilknur Bayrak Pehlivan,et al.  Ion conduction mechanism of nanocomposite polymer electrolytes comprised of polyethyleneimine–lithium bis(trifluoromethylsulfonyl)imide and silica , 2014 .

[158]  Delia J. Milliron,et al.  Near‐Infrared Spectrally Selective Plasmonic Electrochromic Thin Films , 2013 .

[159]  Andreas F. Meyer,et al.  Long‐term stability of dye‐sensitised solar cells , 2001 .

[160]  Ladislav Kavan,et al.  Lithium insertion into titanium dioxide (anatase) electrodes: microstructure and electrolyte effects , 2001 .

[161]  Giuseppe Gigli,et al.  Growing perovskite into polymers for easy-processable optoelectronic devices , 2015, Scientific Reports.

[162]  Christophe Ballif,et al.  Building Integrated Photovoltaics (BIPV): Review, Potentials, Barriers and Myths , 2013 .

[163]  P. Somani,et al.  Electrochromic materials and devices: present and future , 2003, Materials Chemistry and Physics.

[164]  Marko Topič,et al.  Preparation and Characterisation of Nano-Structured WO3-TiO2 Layers for Photoelectrochromic Devices , 2005 .

[165]  John Rick,et al.  Ionic liquid polymer electrolytes , 2013 .

[166]  E. L. Ameziane,et al.  Structural, electrical and optical properties of sputtered vanadium pentoxide thin films , 1995 .

[167]  Laszlo B. Kish,et al.  Nanomaterials for benign indoor environments : Electrochromics for “smart windows”, sensors for air quality, and photo-catalysts for air cleaning , 2007 .

[168]  Arno Seeboth,et al.  Materials for intelligent sun protecting glazing , 2000 .

[169]  Kc Ho,et al.  A Photoelectrochromic Device using a PEDOT Thin Film , 2005 .

[170]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[171]  Hong Mo Yang,et al.  Electrochromic dynamic windows for office buildings , 2012 .

[172]  Shlomo Magdassi,et al.  Self‐Assembly of Perovskite for Fabrication of Semitransparent Perovskite Solar Cells , 2015 .

[173]  Brian A. Gregg,et al.  Photoelectrochromic cells and their applications , 1997 .

[174]  John R. Reynolds,et al.  Manufacture and demonstration of organic photovoltaic‐powered electrochromic displays using roll coating methods and printable electrolytes , 2012 .

[175]  Héctor D. Abruña,et al.  Electropolymerization of vinylpyridine and vinylbipyridine complexes of iron and ruthenium: homopolymers, copolymers, reactive polymers , 1982 .

[176]  David R. Rosseinsky,et al.  Electrochemical bichromic behaviour of ferric ferrocyanide (Prussian Blue) in thin film redox processes , 1982 .

[177]  Michael T. Otley,et al.  Acrylated poly(3,4-propylenedioxythiophene) for enhancement of lifetime and optical properties for single-layer electrochromic devices. , 2014, ACS applied materials & interfaces.

[178]  Gitti L. Frey,et al.  Hybrid mesostructured electrodes for fast-switching proton-based solid state electrochromic devices , 2013 .

[179]  Enrico Masetti,et al.  A comparison of the electrochromic properties of WO3 films intercalated with H+, Li+ and Na+ , 1996 .

[180]  Christopher P. Warren,et al.  Cyclic voltammetric studies of Prussian blue and viologens within a paper matrix for electrochromic printing applications , 1999 .

[181]  Wolfgang Graf,et al.  Switchable windows with tungsten oxide , 2008 .

[182]  Clemens Bechinger,et al.  Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films , 1997 .

[183]  Satyen K. Deb,et al.  Stand-alone photovoltaic-powered electrochromic smart window , 2001 .

[184]  Nicholas DeForest,et al.  United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings , 2015 .

[185]  Tao He,et al.  Photochromic materials based on tungsten oxide , 2007 .

[186]  Pierluigi Cossari,et al.  Room temperature processing for solid-state electrochromic devices on single substrate: From glass to flexible plastic , 2016 .

[187]  Peter Lund,et al.  Review of stability for advanced dye solar cells , 2010 .

[188]  Andreas Hinsch,et al.  Worldwide first fully up‐scaled fabrication of 60 × 100 cm2 dye solar module prototypes , 2012 .

[189]  Junsheng Yu,et al.  Ethylenedioxythiophene derivatized polynapthalenes as active materials for electrochromic devices , 2013 .

[190]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.

[191]  Gunnar A. Niklasson,et al.  Electrochromic tungsten oxide: the role of defects , 2004 .

[192]  Gunnar A. Niklasson,et al.  Polaron absorption in amorphous tungsten oxide films , 2001 .

[193]  Michael T. Otley,et al.  Solid-state electrochromic devices: relationship of contrast as a function of device preparation parameters , 2014 .

[194]  C. Granqvist,et al.  Electrochromic smart windows: energy efficiency and device aspects , 2003, Renewable Energy.

[195]  Vincenzo Balzani,et al.  Towards an electricity-powered world , 2011 .

[196]  A. L. Dyer,et al.  Orange and Red to Transmissive Electrochromic Polymers Based on Electron-Rich Dioxythiophenes , 2010 .

[197]  T. Georgiou,et al.  Anionic amphiphilic end‐linked conetworks by the combination of quasiliving carbocationic and group transfer polymerizations , 2009 .

[198]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[199]  Satyen K. Deb,et al.  Comparison of electrochromic amorphous and crystalline tungsten oxide films , 2003 .

[200]  Remya Ravi,et al.  A pragmatic approach to methyl methacrylate based solid polymer electrolyte processing: A case study for electrochromism , 2015 .

[201]  Levent Toppare,et al.  Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: Multicolored electrochromic polymers , 2014 .

[202]  Xuehong Lu,et al.  Hybrid Materials and Polymer Electrolytes for Electrochromic Device Applications , 2012, Advanced materials.

[203]  M. Johnston,et al.  Highly Efficient Perovskite Solar Cells with Tunable Structural Color , 2015, Nano letters.

[204]  Chongwu Zhou,et al.  The race to replace tin-doped indium oxide: which material will win? , 2010, ACS nano.

[205]  Suresh Chand,et al.  Poly(3,4-ethylenedioxyselenophene) and its derivatives: novel organic electronic materials. , 2014, Accounts of chemical research.

[206]  Marina E. Rincón,et al.  Photoelectrochromic performance of tungsten oxide based devices with PEG–titanium complex as solvent-free electrolytes , 2012 .

[207]  Gunnar A. Niklasson,et al.  Electrochromic Materials and Devices: : Brief Survey and New Data on Optical Absorption in Tungsten Oxide and Nickel Oxide Films , 2006 .

[208]  U. Krašovec,et al.  Photoelectrochromic window with Pt catalyst , 2006 .

[209]  A. L. Dyer,et al.  Completing the color palette with spray-processable polymer electrochromics. , 2011, ACS applied materials & interfaces.

[210]  Giuseppe Gigli,et al.  Photovoltachromic device with a micropatterned bifunctional counter electrode. , 2014, ACS applied materials & interfaces.

[211]  Claude Chevrot,et al.  Optical and electronic properties of undoped and doped poly(N-alkylcarbazole) thin layers , 1996 .

[212]  D. Bellet,et al.  Flexible transparent conductive materials based on silver nanowire networks: a review , 2013, Nanotechnology.

[213]  Tayfun Gokmen,et al.  Device characteristics of a 10.1% hydrazine‐processed Cu2ZnSn(Se,S)4 solar cell , 2012 .

[214]  Michel Armand,et al.  Synthesis and characterization of new block copolymer electrolytes with solvating affinities for different cations , 2005 .

[215]  C. Granqvist Electrochromics for smart windows: Oxide-based thin films and devices , 2014 .

[216]  G. Pagani,et al.  Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach. , 2014, Chemical communications.

[217]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[218]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[219]  B. Bowerman,et al.  EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION. , 2001 .

[220]  David R. Rosseinsky,et al.  Electrochemical polychromicity in iron hexacyanoferrate films, and a new film form of ferric ferricyanide , 1983 .

[221]  Hui Shen,et al.  Novel photoelectrochromic cells fabricated with wirelike photo-electrode , 2008 .

[222]  Cheolmin Park,et al.  Color combination of conductive polymers for black electrochromism. , 2012, ACS applied materials & interfaces.

[223]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[224]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[225]  O. Schirmer,et al.  Light induced W5+ ESR in WO3 , 1977 .

[226]  Elias Stathatos,et al.  A High-Performance Solid-State Dye-Sensitized Photoelectrochemical Cell Employing a Nanocomposite Gel Electrolyte Made by the Sol–Gel Route , 2002 .

[227]  M. Balkanski,et al.  Physical investigations on electron-beam evaporated vanadium pentoxide films , 1998 .

[228]  Eri Amasawa,et al.  Design of a New Energy‐Harvesting Electrochromic Window Based on an Organic Polymeric Dye, a Cobalt Couple, and PProDOT‐Me2 , 2014 .

[229]  Xuehong Lu,et al.  Toward electrochromic device using solid electrolyte with polar polymer host. , 2009, The journal of physical chemistry. B.

[230]  David K. Benson,et al.  Approaches for large-area a-SiC:H photovoltaic-powered electrochromic window coatings , 2000 .

[231]  Ming-Che Yang,et al.  Fabrication of stable photovoltachromic cells using a solvent-free hybrid polymer electrolyte. , 2014, Nanoscale.

[232]  John R. Reynolds,et al.  Poly[Bis-EDOT-Isoindigo]: An Electroactive Polymer Applied to Electrochemical Supercapacitors , 2012 .

[233]  S. Y. Lin,et al.  Electrochromic properties of sputtered TiO2 thin films , 2006 .

[234]  Aryasomayajula Subrahmanyam,et al.  A note on fast protonic solid state electrochromic device : NiOx/Ta2O5/WO3- x , 2007 .

[235]  Yongxiang Li,et al.  Novel photoelectrochromic cells containing a polyaniline layer and a dye-sensitized nanocrystalline TiO2 photovoltaic cell , 1998 .

[236]  V. Balzani,et al.  Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition. , 2016, Chemistry.

[237]  Xuehong Lu,et al.  High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices. , 2011, Physical chemistry chemical physics : PCCP.

[238]  John R. Reynolds,et al.  Electrochromic organic and polymeric materials for display applications , 2006, Displays.

[239]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[240]  P. Yianoulis,et al.  “Partly covered” photoelectrochromic devices with enhanced coloration speed and efficiency , 2012 .

[241]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[242]  M. Armand,et al.  Building better batteries , 2008, Nature.

[243]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[244]  Frédéric Vidal,et al.  Self-supported semi-interpenetrating polymer networks for new design of electrochromic devices , 2008 .

[245]  Satyen K. Deb,et al.  Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films , 2001 .