Modeling for giant magnetostrictive actuators with rate-dependent hysteresis based on Hammerstein-like system by using LS-SVM

The rate-dependent hysteresis in giant magnetostrictive materials is a major impediment to the application of such material in actuators. In this paper, a Hammerstein-like model based on Least Square Support Vector Machines (LS-SVM) is proposed to model the rate-dependent hysteresis system. We show that it is possible to construct a unique dynamic model in a given frequency range for a rate-dependent hysteresis system using the sinusoidal scanning signals as the training set of signals for the linear dynamic subsystem of the Hammerstein-like model, which guarantees an outstanding generalization ability of frequency. The LS-SVM parameters influencing the model accuracy are determined through the intelligent particle swarm optimization (PSO) and the dimension of input data is also discussed. Simulations on a giant magnetostrictive actuator (GMA) verify both the effectiveness and practicality of the proposed modeling method.

[1]  J. Schoukens,et al.  Blind Maximum Likelihood Identification of Hammerstein Systems , 2008 .

[2]  Dennis S. Bernstein,et al.  Piecewise Linear Identification for the Rate-Independent and Rate-Dependent Duhem Hysteresis Models , 2007, IEEE Transactions on Automatic Control.

[3]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[4]  Gregory D. Buckner,et al.  Modeling piezoelectric actuators with Hysteretic Recurrent Neural Networks , 2010 .

[5]  Feng Ding,et al.  Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations , 2005, IEEE Trans. Autom. Control..

[6]  JinHyoung Oh,et al.  Identification of rate-dependent hysteresis using the semilinear Duhem model , 2004, Proceedings of the 2004 American Control Conference.

[7]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[8]  D. Westwick,et al.  Separable Least Squares Identification of Nonlinear Hammerstein Models: Application to Stretch Reflex Dynamics , 2001, Annals of Biomedical Engineering.

[9]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[11]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[12]  Minyue Fu,et al.  A blind approach to Hammerstein model identification , 2002, IEEE Trans. Signal Process..

[13]  Hui Chen,et al.  Corrigendum to “A neural networks based model for rate-dependent hysteresis for piezoceramic actuators” [Sens. Actuators A 143 (2008) 370–376] , 2008 .

[14]  C. Su,et al.  Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .

[15]  S. Billings,et al.  Non-linear system identification using the Hammerstein model , 1979 .

[16]  Bijan Shirinzadeh,et al.  Sliding Mode Control of a Piezoelectric Actuator with Neural Network Compensating Rate-Dependent Hysteresis , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[17]  Chengbao Jiang,et al.  Effect of compressive stress on magnetostriction hysteresis of 〈1 1 0〉 oriented Tb0.29Dy0.48Ho0.23Fe2 crystal , 2009 .

[18]  Miroslaw Pawlak,et al.  Nonparametric identification of a cascade nonlinear time series system , 1991, Signal Process..

[19]  Feng Ding,et al.  Iterative least-squares solutions of coupled Sylvester matrix equations , 2005, Syst. Control. Lett..

[20]  Fouad Giri,et al.  Identification of block-oriented systems in the presence of nonparametric input nonlinearities of switch and backlash types , 2010, Autom..

[21]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[22]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[23]  Nagi G. Naganathan,et al.  Preisach modeling of hysteresis for piezoceramic actuator system , 2002 .

[24]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[25]  U-Xuan Tan,et al.  Rate-Dependent Hysteresis Model of Piezoelectric using Singularity Free Prandtl-Ishlinskii Model , 2007, 2007 International Symposium on Computational Intelligence in Robotics and Automation.

[26]  Biao Huang,et al.  A blind approach to closed-loop identification of Hammerstein systems , 2007, Int. J. Control.

[27]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[28]  J. Mao,et al.  Fuzzy Dynamic Model of a Giant Magnetostrictive Actuator , 2007 .

[29]  M. Pawlak On the series expansion approach to the identification of Hammerstein systems , 1991 .

[30]  Er-Wei Bai,et al.  A blind approach to the Hammerstein-Wiener model identification , 2002, Autom..

[31]  Hui Chen,et al.  A neural networks based model for rate-dependent hysteresis for piezoceramic actuators , 2008 .

[32]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[33]  Feng Ding,et al.  Gradient based iterative solutions for general linear matrix equations , 2009, Comput. Math. Appl..

[34]  Zi-Qiang Lang,et al.  Controller design oriented model identification method for Hammerstein system, , 1993, Autom..

[35]  JianQin Mao,et al.  Intelligent modeling and control for nonlinear systems with rate-dependent hysteresis , 2009, Science in China Series F: Information Sciences.

[36]  Er-Wei Bai,et al.  Identification of linear systems with hard input nonlinearities of known structure , 2002, Autom..