Asymptotics for Rough Stochastic Volatility Models

Using the large deviation principle (LDP) for a rescaled fractional Brownian motion $B^H_t$, where the rate function is defined via the reproducing kernel Hilbert space, we compute small-time asymptotics for a correlated fractional stochastic volatility model of the form $dS_t=S_t\sigma(Y_t) (\bar{\rho} dW_t +\rho dB_t), \,dY_t=dB^H_t$, where $\sigma$ is $\alpha$-Holder continuous for some $\alpha\in(0,1]$; in particular, we show that $t^{H-\frac{1}{2}} \log S_t $ satisfies the LDP as $t\to0$ and the model has a well-defined implied volatility smile as $t \to 0$, when the log-moneyness $k(t)=x t^{\frac{1}{2}-H}$. Thus the smile steepens to infinity or flattens to zero depending on whether $H\in(0,\frac{1}{2})$ or $H\in(\frac{1}{2},1)$. We also compute large-time asymptotics for a fractional local-stochastic volatility model of the form $dS_t= S_t^{\beta} |Y_t|^p dW_t,dY_t=dB^H_t$, and we generalize two identities in Matsumoto and Yor [Probab. Surv., 2 (2005), pp. 312--347] to show that $\frac{1}{t^{2H}}\l...

[1]  M. Rosenbaum,et al.  Volatility is rough , 2014, 1410.3394.

[2]  Jim Gatheral,et al.  Pricing under rough volatility , 2016 .

[3]  D. Nualart The Malliavin Calculus and Related Topics , 1995 .

[4]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[5]  F. Comte,et al.  Long memory continuous time models , 1996 .

[6]  Mark Veraar,et al.  The stochastic Fubini theorem revisited , 2012 .

[7]  L. Decreusefond,et al.  Stochastic Analysis of the Fractional Brownian Motion , 1999 .

[8]  F. Viens,et al.  Small-Time Asymptotics for Gaussian Self-Similar Stochastic Volatility Models , 2015, Applied Mathematics & Optimization.

[9]  G. Willard Calculating Prices and Sensitivities for Path-Independent Derivatives Securities in Multifactor Models , 1996 .

[10]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[11]  Xin Zhang,et al.  Extreme-strike asymptotics for general Gaussian stochastic volatility models , 2015, Annals of Finance.

[12]  H. Vincent Poor,et al.  Linear estimation of self-similar processes via Lamperti's transformation , 2000 .

[13]  T. Marquardt Fractional Lévy processes with an application to long memory moving average processes , 2006 .

[14]  A. Millet,et al.  Large deviations for rough paths of the fractional Brownian motion , 2004, math/0412200.

[15]  E. Alòs A Generalization of Hull and White Formula and Applications to Option Pricing Approximation , 2004 .

[16]  Masaaki Fukasawa,et al.  Asymptotic analysis for stochastic volatility: martingale expansion , 2011, Finance Stochastics.

[17]  Kun Gao,et al.  Asymptotics of implied volatility to arbitrary order , 2011, Finance Stochastics.

[18]  M. Fukasawa Short-time at-the-money skew and rough fractional volatility , 2015, 1501.06980.

[19]  Qi-Man Shao,et al.  LARGE DEVIATIONS FOR LOCAL TIMES AND INTERSECTION LOCAL TIMES OF FRACTIONAL BROWNIAN MOTIONS AND RIEMANN―LIOUVILLE PROCESSES , 2009, 0910.0324.