Stable Isotope Labeling of Amino Acids in Flies (SILAF) Reveals Differential Phosphorylation of Mitochondrial Proteins Upon Loss of OXPHOS Subunits

[1]  L. Käll,et al.  The one-carbon pool controls mitochondrial energy metabolism via complex I and iron-sulfur clusters , 2021, Science Advances.

[2]  I. Atanassov,et al.  Quantitative Proteomics in Drosophila with Holidic Stable-Isotope Labeling of Amino Acids in Fruit Flies (SILAF). , 2020, Methods in molecular biology.

[3]  A. Pajak,et al.  Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo , 2019, PLoS genetics.

[4]  Jing Wang,et al.  WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs , 2019, Nucleic Acids Res..

[5]  B. Habermann,et al.  mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations , 2019, bioRxiv.

[6]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[7]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[8]  M. Mann,et al.  Organellar Proteomics and Phospho-Proteomics Reveal Subcellular Reorganization in Diet-Induced Hepatic Steatosis. , 2018, Developmental cell.

[9]  Maojun Yang,et al.  Structure of the intact 14-subunit human cytochrome c oxidase , 2018, Cell Research.

[10]  Dorte B. Bekker-Jensen,et al.  Benchmarking common quantification strategies for large-scale phosphoproteomics , 2018, Nature Communications.

[11]  I. Atanassov,et al.  Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals , 2017, eLife.

[12]  M. Piper Using artificial diets to understand the nutritional physiology of Drosophila melanogaster. , 2017, Current opinion in insect science.

[13]  Maojun Yang,et al.  Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2 , 2017, Cell.

[14]  Matthew D. Dun,et al.  Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia , 2017, Leukemia.

[15]  Linda Partridge,et al.  Matching Dietary Amino Acid Balance to the In Silico-Translated Exome Optimizes Growth and Reproduction without Cost to Lifespan , 2017, Cell metabolism.

[16]  T. Miyamoto,et al.  Gluconeogenesis: An ancient biochemical pathway with a new twist , 2017, Fly.

[17]  M. Lovell,et al.  Mutations in the accessory subunit NDUFB10 result in isolated complex I deficiency and illustrate the critical role of intermembrane space import for complex I holoenzyme assembly , 2016, Human molecular genetics.

[18]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[19]  Jüergen Cox,et al.  The MaxQuant computational platform for mass spectrometry-based shotgun proteomics , 2016, Nature Protocols.

[20]  S. Lim,et al.  Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation , 2016, Cell & Bioscience.

[21]  R. Fischer,et al.  Proteomic changes in response to crystal formation in Drosophila Malpighian tubules , 2016, Fly.

[22]  Karl R. Clauser,et al.  MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins , 2015, Nucleic Acids Res..

[23]  Javier García-Bermúdez,et al.  PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H(+)-ATP Synthase. , 2015, Cell reports.

[24]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[25]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[26]  R. Harris,et al.  PyTMs: a useful PyMOL plugin for modeling common post-translational modifications , 2014, BMC Bioinformatics.

[27]  J. Olsen,et al.  Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. , 2014, Journal of proteome research.

[28]  Marco Y. Hein,et al.  Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ * , 2014, Molecular & Cellular Proteomics.

[29]  Peter R Baker,et al.  MS-Viewer: A Web-based Spectral Viewer for Proteomics Results* , 2014, Molecular & Cellular Proteomics.

[30]  L. Jensen,et al.  Proteomic Analysis of Arginine Methylation Sites in Human Cells Reveals Dynamic Regulation During Transcriptional Arrest* , 2014, Molecular & Cellular Proteomics.

[31]  Linda Partridge,et al.  A holidic medium for Drosophila melanogaster , 2013, Nature Methods.

[32]  M. Mann,et al.  Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry* , 2013, Molecular & Cellular Proteomics.

[33]  David E. James,et al.  Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2 , 2013, Cell metabolism.

[34]  K. Khoo,et al.  Evaluation of Drosophila metabolic labeling strategies for in vivo quantitative proteomic analyses with applications to early pupa formation and amino acid starvation. , 2013, Journal of proteome research.

[35]  Derek J. Bailey,et al.  A quantitative map of the liver mitochondrial phosphoproteome reveals posttranslational control of ketogenesis. , 2012, Cell metabolism.

[36]  J. Enríquez,et al.  NDUFA4 is a subunit of complex IV of the mammalian electron transport chain. , 2012, Cell metabolism.

[37]  P. Jin,et al.  Stable isotope labeling with amino acids in Drosophila for quantifying proteins and modifications. , 2012, Journal of proteome research.

[38]  A. M. Tarone,et al.  Genetic variation in the Yolk protein expression network of Drosophila melanogaster: sex-biased negative correlations with longevity , 2012, Heredity.

[39]  C. Rocher,et al.  Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10. , 2012, Biochimica et biophysica acta.

[40]  Shao-En Ong The expanding field of SILAC , 2012, Analytical and Bioanalytical Chemistry.

[41]  L. Partridge,et al.  The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster , 2011, PLoS genetics.

[42]  P. Højrup,et al.  Quantitative proteomics by amino acid labeling in C. elegans , 2011, Nature Methods.

[43]  Bonnie Berger,et al.  An integrative approach to ortholog prediction for disease-focused and other functional studies , 2011, BMC Bioinformatics.

[44]  C. Hunte,et al.  Functional Modules and Structural Basis of Conformational Coupling in Mitochondrial Complex I , 2010, Science.

[45]  M. Hüttemann,et al.  Phosphomimetic substitution of cytochrome C tyrosine 48 decreases respiration and binding to cardiolipin and abolishes ability to trigger downstream caspase activation. , 2010, Biochemistry.

[46]  Matthias Selbach,et al.  The SILAC Fly Allows for Accurate Protein Quantification in Vivo* , 2010, Molecular & Cellular Proteomics.

[47]  D. Kass,et al.  Modulation of Mitochondrial Proteome and Improved Mitochondrial Function by Biventricular Pacing of Dyssynchronous Failing Hearts , 2010, Circulation. Cardiovascular genetics.

[48]  M. Mann,et al.  SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function , 2008, Cell.

[49]  Laura A. Sullivan,et al.  Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer , 2007, Cell.

[50]  D. Galati,et al.  Site specific phosphorylation of cytochrome c oxidase subunits I, IVi1 and Vb in rabbit hearts subjected to ischemia/reperfusion , 2007, FEBS letters.

[51]  L. Scorrano,et al.  Organelle isolation: functional mitochondria from mouse liver, muscle and cultured filroblasts , 2007, Nature Protocols.

[52]  Blagoy Blagoev,et al.  Quantitative proteomics to study mitogen-activated protein kinases. , 2006, Methods.

[53]  M. Mann,et al.  Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK) , 2006, Nature Methods.

[54]  M. Mann,et al.  Identifying and quantifying in vivo methylation sites by heavy methyl SILAC , 2004, Nature Methods.

[55]  Eric S. Lander,et al.  Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[57]  B. Kadenbach,et al.  Separation of mammalian cytochrome c oxidase into 13 polypeptides by a sodium dodecyl sulfate-gel electrophoretic procedure. , 1983, Analytical biochemistry.

[58]  E. Krebs,et al.  FURTHER STUDIES ON THE SITE PHOSPHORYLATED IN THE PHOSPHORYLASE B TO A REACTION. , 1964, Biochemistry.

[59]  E. Krebs,et al.  The phosphorylase b to a converting enzyme of rabbit skeletal muscle. , 1956, Biochimica et biophysica acta.