Observers for Linear Systems by the Time Integrals and Moving Average of the Output

In this paper, it is shown that, under some mild assumptions, it is possible to design observers for linear time-invariant continuous-time and discrete-time systems by feeding classical linear observers (e.g., the Kalman filters and the Luenberger observer) with the successive integrals and the moving average of the measured output, respectively. The main interest in these observers relies on the fact that both the integral and the moving average exhibit low-pass behaviors, thus allowing the design of observers that are less sensitive to high-frequency noise. Examples are reported all throughout this paper to corroborate the theoretical results and to highlight the improved filtering properties of the proposed observers.

[1]  D. Luenberger Observers for multivariable systems , 1966 .

[2]  D. Luenberger An introduction to observers , 1971 .

[3]  William A. Wolovich,et al.  On state estimation of observable systems , 1968 .

[4]  Thomas Kailath,et al.  Linear Systems , 1980 .

[5]  A. Tornambè High-gain observers for non-linear systems , 1992 .

[6]  G. Basile,et al.  On the observability of linear, time-invariant systems with unknown inputs , 1969 .

[7]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[8]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[9]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[10]  Siegfried M. Rump,et al.  Inversion of extremely Ill-conditioned matrices in floating-point , 2009 .

[11]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[12]  Arnold Neumaier,et al.  Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization , 1998, SIAM Rev..

[13]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[14]  Alina Voda,et al.  A new robust observer approach for unknown input and state estimation , 2018, 2018 European Control Conference (ECC).

[15]  Andrew R. Teel,et al.  A hybrid fixed-time observer for state estimation of linear systems , 2018, Autom..

[16]  René Thomas,et al.  DETERMINISTIC CHAOS SEEN IN TERMS OF FEEDBACK CIRCUITS: ANALYSIS, SYNTHESIS, "LABYRINTH CHAOS" , 1999 .

[17]  Huijun Gao,et al.  A new design of robust H2 filters for uncertain systems , 2008, Syst. Control. Lett..

[18]  Jie Chen,et al.  Design of unknown input observers and robust fault detection filters , 1996 .

[19]  E. Glenn Lightsey,et al.  GPS/INS Kalman filter design for spacecraft operating in the proximity of the international space station , 2003 .

[20]  F. Lewis Optimal Estimation: With an Introduction to Stochastic Control Theory , 1986 .

[21]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[22]  Laura Menini,et al.  A “practical” observer for nonlinear systems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[23]  M. James,et al.  The generalised inverse , 1978, The Mathematical Gazette.

[24]  A. Stephen Morse,et al.  A distributed observer for a time-invariant linear system , 2017, 2017 American Control Conference (ACC).

[25]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[26]  Sauro Longhi,et al.  Ripple-free dead-beat tracking for multirate sampled-data systems , 1995 .

[27]  Jie Chen,et al.  Optimal unknown input distribution matrix selection in robust fault diagnosis , 1993, Autom..

[28]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[29]  Hassan K. Khalil,et al.  Error bounds in differentiation of noisy signals by high-gain observers , 2008, Syst. Control. Lett..

[30]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[31]  G. Stein,et al.  Robustness with observers , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[32]  A. Astolfi,et al.  On the stability of the recursive Kalman filter for linear time-invariant systems , 2008, 2008 American Control Conference.

[33]  Laura Menini,et al.  A Newton-like algorithm to compute the inverse of a nonlinear map that converges in finite time , 2018, Autom..

[34]  L. Menini,et al.  Symmetries and Semi-invariants in the Analysis of Nonlinear Systems , 2011 .

[35]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[36]  S. Walcher On differential equations in normal form , 1991 .

[37]  Arie Levant,et al.  Realization and Discretization of Asymptotically Stable Homogeneous Systems , 2017, IEEE Transactions on Automatic Control.

[38]  J. Bongiorno,et al.  Observers for linear multivariable systems with applications , 1971 .

[39]  G. Johnson On a deterministic theory of estimation and control , 1969 .

[40]  Gonzalo R. Arce,et al.  Nonlinear Signal Processing - A Statistical Approach , 2004 .

[41]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[42]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[43]  R. Kálmán On the general theory of control systems , 1959 .

[44]  Corrado Possieri,et al.  Structural Properties of a Class of Linear Hybrid Systems and Output Feedback Stabilization , 2017, IEEE Transactions on Automatic Control.

[45]  Arash Sadeghzadeh,et al.  Robust H 2 and H ∞ filtering for discrete-time uncertain Linear fractional transform systems , 2015 .

[46]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[47]  P. Swerling Parameter Estimation for Waveforms in Additive Gaussian Noise , 1959 .