How We Make DNA Origami

DNA origami has attracted substantial attention since its invention ten years ago, due to the seemingly infinite possibilities that it affords for creating customized nanoscale objects. Although the basic concept of DNA origami is easy to understand, using custom DNA origami in practical applications requires detailed know‐how for designing and producing the particles with sufficient quality and for preparing them at appropriate concentrations with the necessary degree of purity in custom environments. Such know‐how is not readily available for newcomers to the field, thus slowing down the rate at which new applications outside the field of DNA nanotechnology may emerge. To foster faster progress, we share in this article the experience in making and preparing DNA origami that we have accumulated over recent years. We discuss design solutions for creating advanced structural motifs including corners and various types of hinges that expand the design space for the more rigid multilayer DNA origami and provide guidelines for preventing undesired aggregation and on how to induce specific oligomerization of multiple DNA origami building blocks. In addition, we provide detailed protocols and discuss the expected results for five key methods that allow efficient and damage‐free preparation of DNA origami. These methods are agarose‐gel purification, filtration through molecular cut‐off membranes, PEG precipitation, size‐exclusion chromatography, and ultracentrifugation‐based sedimentation. The guide for creating advanced design motifs and the detailed protocols with their experimental characterization that we describe here should lower the barrier for researchers to accomplish the full DNA origami production workflow.

[1]  Marta Kwiatkowska,et al.  Modelling DNA origami self-assembly at the domain level. , 2015, The Journal of chemical physics.

[2]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[3]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[4]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[5]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[6]  Friedrich C. Simmel,et al.  DNA Origami as a Nanoscopic Ruler for Super‐Resolution Microscopy , 2009 .

[7]  Hendrik Dietz,et al.  Magnesium-free self-assembly of multi-layer DNA objects , 2012, Nature Communications.

[8]  Hao Yan,et al.  DNA Nanostructures as Programmable Biomolecular Scaffolds. , 2015, Bioconjugate chemistry.

[9]  Hyojeong Kim,et al.  Stability of DNA Origami Nanostructure under Diverse Chemical Environments , 2014 .

[10]  Xu Zhou,et al.  Stability study of tubular DNA origami in the presence of protein crystallisation buffer , 2015 .

[11]  Björn Högberg,et al.  Purification of functionalized DNA origami nanostructures. , 2015, ACS nano.

[12]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[13]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[14]  Tim Liedl,et al.  Wireframe and tensegrity DNA nanostructures. , 2014, Accounts of chemical research.

[15]  Jejoong Yoo,et al.  In situ structure and dynamics of DNA origami determined through molecular dynamics simulations , 2013, Proceedings of the National Academy of Sciences.

[16]  Hao Yan,et al.  Scaffolded DNA origami of a DNA tetrahedron molecular container. , 2009, Nano letters.

[17]  Jejoong Yoo,et al.  De novo reconstruction of DNA origami structures through atomistic molecular dynamics simulation , 2016, Nucleic acids research.

[18]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[19]  P. Rothemund,et al.  Engineering and mapping nanocavity emission via precision placement of DNA origami , 2016, Nature.

[20]  J. Doye,et al.  Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. , 2010, The Journal of chemical physics.

[21]  H. Su,et al.  DNA origami compliant nanostructures with tunable mechanical properties. , 2014, ACS nano.

[22]  Chenxiang Lin,et al.  Purification of DNA-origami nanostructures by rate-zonal centrifugation , 2012, Nucleic acids research.

[23]  H. Dietz,et al.  Quantifying quality in DNA self-assembly , 2014, Nature Communications.

[24]  William M Shih,et al.  DNA nanotubes for NMR structure determination of membrane proteins , 2013, Nature Protocols.

[25]  Björn Högberg,et al.  Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides , 2013, Nature Methods.

[26]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[27]  Christof M Niemeyer,et al.  Assembly and purification of enzyme-functionalized DNA origami structures. , 2015, Angewandte Chemie.

[28]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[29]  Tim Liedl,et al.  M1.3--a small scaffold for DNA origami . , 2013, Nanoscale.

[30]  I. Bald,et al.  Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine. , 2016, Angewandte Chemie.

[31]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[32]  M. Rief,et al.  Rigid DNA Beams for High-Resolution Single-Molecule Mechanics** , 2013, Angewandte Chemie.

[33]  Hao Yan,et al.  Reconfigurable DNA origami to generate quasifractal patterns. , 2012, Nano letters.

[34]  Hao Yan,et al.  DNA Gridiron Nanostructures Based on Four-Arm Junctions , 2013, Science.

[35]  W. Chiu,et al.  Designer nanoscale DNA assemblies programmed from the top down , 2016, Science.

[36]  Qiao Jiang,et al.  A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy. , 2016, ACS nano.

[37]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[38]  D. Ingber,et al.  Self-assembly of 3D prestressed tensegrity structures from DNA , 2010, Nature nanotechnology.

[39]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[40]  Yonggang Ke,et al.  Two design strategies for enhancement of multilayer-DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. , 2012, Chemical science.

[41]  Hai-Jun Su,et al.  Direct design of an energy landscape with bistable DNA origami mechanisms. , 2015, Nano letters.

[42]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[43]  William M. Shih,et al.  Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability , 2014, ACS nano.

[44]  Tao Zhang,et al.  Chiral plasmonic DNA nanostructures with switchable circular dichroism , 2013, Nature Communications.

[45]  Georg Krainer,et al.  Structural stability of DNA origami nanostructures in the presence of chaotropic agents. , 2016, Nanoscale.

[46]  T. G. Martin,et al.  Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature , 2012, Science.

[47]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[48]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[49]  T. G. Martin,et al.  Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures , 2012, Science.

[50]  Tim Liedl,et al.  Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. , 2014, Nano letters.

[51]  T. G. Martin,et al.  Cryo-EM structure of a 3D DNA-origami object , 2012, Proceedings of the National Academy of Sciences.

[52]  Jack F Douglas,et al.  High-speed, high-purity separation of gold nanoparticle-DNA origami constructs using centrifugation. , 2014, Soft matter.

[53]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[54]  Zhao Zhang,et al.  DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching. , 2016, Angewandte Chemie.

[55]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[56]  A. Turberfield,et al.  Guiding the folding pathway of DNA origami , 2015, Nature.

[57]  Hai-Jun Su,et al.  Programmable motion of DNA origami mechanisms , 2015, Proceedings of the National Academy of Sciences.

[58]  S. Harrison,et al.  Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching , 2011, Nature.

[59]  Hendrik Dietz,et al.  Nanoscale rotary apparatus formed from tight-fitting 3D DNA components , 2016, Science Advances.

[60]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[61]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[62]  Ralf Jungmann,et al.  DNA Origami Route for Nanophotonics , 2018, ACS photonics.

[63]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[64]  T. LaBean,et al.  Toward larger DNA origami. , 2014, Nano letters.

[65]  Hendrik Dietz,et al.  Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami , 2015, Nano letters.

[66]  Hao Yan,et al.  DNA origami with double-stranded DNA as a unified scaffold. , 2012, ACS nano.

[67]  Johannes B. Woehrstein,et al.  Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT , 2014, Science.

[68]  Tim Liedl,et al.  DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies , 2015, Nano letters.

[69]  Hao Yan,et al.  DNA Origami with Complex Curvatures in Three-Dimensional Space , 2011, Science.

[70]  Philip Tinnefeld,et al.  DNA‐Origami als Nanometerlineal für die superauflösende Mikroskopie , 2009 .

[71]  Adam T Woolley,et al.  Polymerase chain reaction based scaffold preparation for the production of thin, branched DNA origami nanostructures of arbitrary sizes. , 2009, Nano letters.

[72]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[73]  Hao Yan,et al.  Complex wireframe DNA origami nanostructures with multi-arm junction vertices. , 2015, Nature nanotechnology.

[74]  José María Carazo,et al.  Image processing for electron microscopy single-particle analysis using XMIPP , 2008, Nature Protocols.

[75]  William M. Shih,et al.  Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries , 2015, Nature Communications.

[76]  Tim Liedl,et al.  DNA Origami Seesaws as Comparative Binding Assay , 2016, Chembiochem : a European journal of chemical biology.

[77]  H. Dietz,et al.  Placing molecules with Bohr radius resolution using DNA origami. , 2016, Nature nanotechnology.

[78]  Lei Liu,et al.  Routing of individual polymers in designed patterns. , 2015, Nature nanotechnology.

[79]  Christos Argyropoulos,et al.  Plasmon-Exciton Coupling Using DNA Templates. , 2016, Nano letters.

[80]  Jelena Pešić,et al.  Hybrid Structures for Surface-Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene. , 2016, Small.

[81]  M. Zacharias,et al.  Single-molecule dissection of stacking forces in DNA , 2016, Science.

[82]  F. Simmel,et al.  DNA origami-based nanoribbons: assembly, length distribution, and twist , 2011, Nanotechnology.

[83]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions , 2014, Angewandte Chemie.

[84]  Stefan Raunser,et al.  A facile method for preparation of tailored scaffolds for DNA-origami. , 2014, Small.

[85]  Chenxiang Lin,et al.  Recovery of intact DNA nanostructures after agarose gel–based separation , 2011, Nature Methods.

[86]  Hao Yan,et al.  Lattice-free prediction of three-dimensional structure of programmed DNA assemblies , 2014, Nature Communications.

[87]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[88]  Shawn M. Douglas,et al.  Multilayer DNA origami packed on a square lattice. , 2009, Journal of the American Chemical Society.

[89]  K. Gothelf,et al.  Multilayer DNA origami packed on hexagonal and hybrid lattices. , 2012, Journal of the American Chemical Society.

[90]  Masayuki Endo,et al.  State-of-the-art high-speed atomic force microscopy for investigation of single-molecular dynamics of proteins. , 2014, Chemical reviews.