Membrane excitability and fear conditioning in cerebellar Purkinje cell

[1]  Bibiana Scelfo,et al.  The Cerebellum: Synaptic Changes and Fear Conditioning , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[2]  Maiken Nedergaard,et al.  Activity-Dependent Long-Term Potentiation of Intrinsic Excitability in Hippocampal CA1 Pyramidal Neurons , 2005, The Journal of Neuroscience.

[3]  Robert H. Cudmore,et al.  Long-term potentiation of intrinsic excitability in LV visual cortical neurons. , 2004, Journal of neurophysiology.

[4]  Bibiana Scelfo,et al.  Long-Term Synaptic Changes Induced in the Cerebellar Cortex by Fear Conditioning , 2004, Neuron.

[5]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[6]  D. Debanne,et al.  Long-term plasticity of intrinsic excitability: learning rules and mechanisms. , 2003, Learning & memory.

[7]  Edi Barkai,et al.  Long‐term modifications in intrinsic neuronal properties and rule learning in rats , 2003, The European journal of neuroscience.

[8]  J. Edgerton,et al.  Distinct contributions of small and large conductance Ca2+‐activated K+ channels to rat Purkinje neuron function , 2003, The Journal of physiology.

[9]  M. Womack,et al.  Active Contribution of Dendrites to the Tonic and Trimodal Patterns of Activity in Cerebellar Purkinje Neurons , 2002, The Journal of Neuroscience.

[10]  M. Womack,et al.  Characterization of large conductance Ca2+‐activated K+ channels in cerebellar Purkinje neurons , 2002, The European journal of neuroscience.

[11]  F. Tempia,et al.  A‐Type potassium currents active at subthreshold potentials in mouse cerebellar purkinje cells , 2002, The Journal of physiology.

[12]  H. Diener,et al.  Involvement of the human cerebellum in fear-conditioned potentiation of the acoustic startle response: a PET study , 2002, Neuroreport.

[13]  Benedetto Sacchetti,et al.  Cerebellar role in fear-conditioning consolidation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Michael Häusser,et al.  Membrane potential bistability is controlled by the hyperpolarization‐activated current IH in rat cerebellar Purkinje neurons in vitro , 2002, The Journal of physiology.

[15]  H. Diener,et al.  Fear conditioned changes of heart rate in patients with medial cerebellar lesions , 2002, Journal of neurology, neurosurgery, and psychiatry.

[16]  E. Baldi,et al.  Time‐dependent inhibition of hippocampal LTP in vitro following contextual fear conditioning in the rat , 2002, The European journal of neuroscience.

[17]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[18]  E. D’Angelo,et al.  Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum , 2001, Nature Neuroscience.

[19]  E. Barkai,et al.  Long-Lasting Cholinergic Modulation Underlies Rule Learning in Rats , 2001, The Journal of Neuroscience.

[20]  E. D'Angelo,et al.  Long-Term Potentiation of Intrinsic Excitability at the Mossy Fiber–Granule Cell Synapse of Rat Cerebellum , 2000, The Journal of Neuroscience.

[21]  D. Strøbæk,et al.  Pharmacological characterization of small‐conductance Ca2+‐activated K+ channels stably expressed in HEK 293 cells , 2000, British journal of pharmacology.

[22]  D. Linden,et al.  Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons , 2000, Nature Neuroscience.

[23]  C Bucherelli,et al.  Auditory Thalamus, Dorsal Hippocampus, Basolateral Amygdala, and Perirhinal Cortex Role in the Consolidation of Conditioned Freezing to Context and to Acoustic Conditioned Stimulus in the Rat , 1999, The Journal of Neuroscience.

[24]  M. Fendt,et al.  The neuroanatomical and neurochemical basis of conditioned fear , 1999, Neuroscience & Biobehavioral Reviews.

[25]  Bruce P. Bean,et al.  Ionic Currents Underlying Spontaneous Action Potentials in Isolated Cerebellar Purkinje Neurons , 1999, The Journal of Neuroscience.

[26]  D. Alkon,et al.  Intracellular Correlates of Acquisition and Long-Term Memory of Classical Conditioning in Purkinje Cell Dendrites in Slices of Rabbit Cerebellar Lobule HVI , 1998, The Journal of Neuroscience.

[27]  E. Barkai,et al.  Reduced after‐hyperpolarization in rat piriform cortex pyramidal neurons is associated with increased learning capability during operant conditioning , 1998, The European journal of neuroscience.

[28]  Joseph E LeDoux,et al.  Fear conditioning induces associative long-term potentiation in the amygdala , 1997, Nature.

[29]  Steven W. Johnson,et al.  Bicuculline methiodide potentiates NMDA-dependent burst firing in rat dopamine neurons by blocking apamin-sensitive Ca2+-activated K+ currents , 1997, Neuroscience Letters.

[30]  Richard E Thompson,et al.  Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning , 1997, Trends in Neurosciences.

[31]  J. Golowasch,et al.  Memory from the dynamics of intrinsic membrane currents. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J F Disterhoft,et al.  Transient changes in excitability of rabbit CA3 neurons with a time course appropriate to support memory consolidation. , 1996, Journal of neurophysiology.

[33]  Lucien T. Thompson,et al.  Trace Eyeblink Conditioning Increases CA1 Excitability in a Transient and Learning-Specific Manner , 1996, The Journal of Neuroscience.

[34]  S. Grillner,et al.  Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. , 1994, Journal of neurophysiology.

[35]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[36]  W. N. Ross,et al.  Spatial distribution of Ca2+ influx in turtle Purkinje cell dendrites in vitro: role of a transient outward current. , 1993, Journal of neurophysiology.

[37]  WF Supple,et al.  The anterior cerebellar vermis: essential involvement in classically conditioned bradycardia in the rabbit , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  J. Strahlendorf,et al.  Ionic contributions to the oscillatory firing activity of rat Purkinje cells in vitro , 1993, Brain Research.

[39]  Rodolfo Llinás,et al.  P-type calcium channels in the somata and dendrites of adult cerebellar purkinje cells , 1992, Neuron.

[40]  S Grillner,et al.  Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts. , 1992, Neuroreport.

[41]  D. Alkon,et al.  Learning-specific differences in Purkinje-cell dendrites of lobule HVI (Lobulus simplex): intracellular recording in a rabbit cerebellar slice , 1991, Brain Research.

[42]  A. Konnerth,et al.  Synaptic currents in cerebellar Purkinje cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. N. Leaton,et al.  Cerebellar vermis: essential for classically conditioned bradycardia in the rat , 1990, Brain Research.

[44]  D. Alkon,et al.  Classical conditioning reduces amplitude and duration of calcium-dependent afterhyperpolarization in rabbit hippocampal pyramidal cells. , 1989, Journal of neurophysiology.

[45]  D. Tank,et al.  Spatially resolved calcium dynamics of mammalian Purkinje cells in cerebellar slice. , 1988, Science.

[46]  D. L. Alkon,et al.  Membrane changes in a single photoreceptor cause associative learning in Hermissenda. , 1983, Science.

[47]  Rosa H. Huang,et al.  Projections from the cochlear nucleus to the cerebellum , 1982, Brain Research.

[48]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[49]  R. Snider,et al.  RECEIVING AREAS OF THE TACTILE, AUDITORY, AND VISUAL SYSTEMS IN THE CEREBELLUM , 1944 .

[50]  Stephen Maren Neurobiology of Pavlovian fear conditioning. , 2001, Annual review of neuroscience.

[51]  E. Barkai,et al.  Cellular Correlates of Olfactory Learning in the Rat Piriform Cortex , 2001, Reviews in the neurosciences.

[52]  D L Alkon,et al.  Dendritic excitability microzones and occluded long-term depression after classical conditioning of the rabbit's nictitating membrane response. , 1997, Journal of neurophysiology.