Preparation, mechanical properties and microstructure of polyoxymethylene fiber through melt spinning and hot drawing by using injection-molding grade resins

[1]  Xiaojie Guo,et al.  Poly(lactic acid)/polyoxymethylene blends: Morphology, crystallization, rheology, and thermal mechanical properties , 2015 .

[2]  S. J. Timpe,et al.  Development of elastic and plastic properties of polyoxymethylene during bending fatigue , 2014 .

[3]  P. Visakh,et al.  Polyoxymethylene Handbook: Structure, Properties, Applications and their Nanocomposites , 2014 .

[4]  K. Tashiro Crystal Structure and Crystallization Behavior of POM and its Microscopically–Viewed Relation with the Physical and Thermal Properties on the Basis of X–ray Scattering, Vibrational Spectroscopy and Lattice Dynamical Theory , 2014 .

[5]  E. Pamuła,et al.  A study on the melting and crystallization of polyoxymethylene‐copolymer/hydroxyapatite nanocomposites , 2013 .

[6]  A. Durmuş,et al.  Effect of polyhedral oligomeric silsesquioxane (POSS) reinforced polypropylene (PP) nanocomposite on the microstructure and isothermal crystallization kinetics of polyoxymethylene (POM) , 2012 .

[7]  Xiaodong Wang,et al.  Effect of poly(ethylene oxide) on tribological performance and impact fracture behavior of polyoxymethylene/polytetrafluoroethylene fiber composites , 2011 .

[8]  L. Ye,et al.  Structure and properties of highly oriented polyoxymethylene produced by hot stretching , 2011 .

[9]  Tao Zhou,et al.  Non-isothermal crystallization process of polyoxymethylene studied by two-dimensional correlation infrared spectroscopy , 2011 .

[10]  Sung Soo Kim,et al.  Effects of precursor properties on the preparation of polyethylene hollow fiber membranes by stretching , 2008 .

[11]  I. Ward,et al.  Orientation of polyoxymethylene by rolling with side constraints , 2008 .

[12]  E. Piorkowska,et al.  Influence of solid particles on cavitation in poly(methylene oxide) during crystallization , 2007 .

[13]  I. Ward,et al.  Physical and mechanical characterization of oriented polyoxymethylene produced by die-drawing and hydrostatic extrusion , 2006 .

[14]  E. Piorkowska,et al.  Cavitation during isothermal crystallization of isotactic polypropylene , 2001 .

[15]  B. Hsiao,et al.  Structure development in the early stages of crystallization during melt spinning , 2001 .

[16]  K.H.J. Buschow,et al.  Encyclopedia of Materials: Science and Technology , 2004 .

[17]  H. R. Johnson,et al.  Structure development during the melt spinning of poly(oxymethylene) fiber , 2000 .

[18]  E. Piorkowska,et al.  Effect of negative pressure on melting behavior of spherulites in thin films of several crystalline polymers , 1999 .

[19]  T. Komatsu Mechanical properties and structure relationships in drawn fibers of elastomer–polyoxymethylene blends , 1997 .

[20]  G. Ehrenstein,et al.  Formation of β-modification of isotactic polypropylene in its late stage of crystallization , 1996 .

[21]  T. Komatsu Fibrillar structure of superdrawn polyoxymethylene fibres , 1993, Journal of Materials Science.

[22]  Atsushi Aoshima,et al.  Analysis of voids in superdrawn polyoxymethylene fibres , 1992 .

[23]  T. Komatsu,et al.  The effects of pressure on drawing polyoxymethylene: 2. Drawn fibre properties and structure , 1991 .

[24]  T. Komatsu,et al.  Effect of pressure on drawing poly(oxymethylene) fibres: 4. Heat shrinkage of annealed superdrawn fibres , 1991 .

[25]  T. Komatsu,et al.  The effects of pressure on drawing polyoxymethylene: 3. Effects of voids on the chemical resistance of polyoxymethylene drawn fibres , 1991 .

[26]  T. Komatsu,et al.  The effects of pressure on drawing polyoxymethylene: 1. Processing , 1991 .

[27]  T. Schweizer,et al.  The mechanism of orientation in cold‐drawn polyoxymethylene as revealed by crystallographic pole figures , 1989 .

[28]  Y. Takeuchi,et al.  Orientation behavior of high‐modulus polyoxymethylene produced by microwave heating drawing , 1985 .

[29]  K. Nakagawa,et al.  Mechanical and physical properties of ultraoriented polyoxymethylene produced by microwave heating drawing , 1985 .

[30]  I. Ward,et al.  Manufacture of ultrahigh-modulus poly(oxymethylenes) by die drawing , 1981 .

[31]  I. Ward,et al.  Hydrostatic extrusion of polyoxymethylene , 1978 .

[32]  I. Ward,et al.  Study of the production of ultra-high modulus polyoxymethylene by tensile drawing at high temperatures , 1978 .

[33]  L. Scott,et al.  Superdrawn crystalline polymers: A new class of high‐strength fiber , 1974 .

[34]  F. C. Wilson,et al.  Transverse orientation in rolled polyoxymethylene , 1971 .

[35]  L. Alexander,et al.  X-ray diffraction methods in polymer science , 1969 .

[36]  G. Carazzolo Structure of the normal crystal form of polyoxymethylene , 1963 .

[37]  B. Warren X‐Ray Diffraction Methods , 1941 .