Finite element analysis of short and long posterior spinal instrumentation and fixation for different pathological thoracolumbar vertebral fractures

[1]  Fei Jiang,et al.  Biomechanical Analysis of the Spine in Diffuse Idiopathic Skeletal Hyperostosis: Finite Element Analysis , 2021, Applied Sciences.

[2]  Xavier A. Santander,et al.  Retrospective evaluation of TLICS and TLAOSIS scores for the decision treatment of thoracolumbar traumatic fractures in 458 consecutive patients. , 2021, World neurosurgery.

[3]  V. Goel,et al.  Biomechanical Analysis of the Tuning Fork Plate Versus Dual Pelvic Screws in a Sacrectomy Model: A Finite Element Study , 2021, Global spine journal.

[4]  A. Massè,et al.  Long versus Short Segment Instrumentation in Osteoporotic Thoracolumbar Vertebral Fracture , 2020, Asian spine journal.

[5]  N. Marathe,et al.  Posterior Stabilization Without Neural Decompression in Osteoporotic Thoracolumbar Fractures With Dynamic Cord Compression Causing Incomplete Neurological Deficits , 2020, Global spine journal.

[6]  B. van Rietbergen,et al.  Misaligned spinal rods can induce high internal forces consistent with those observed to cause screw pullout and disc degeneration. , 2020, The spine journal : official journal of the North American Spine Society.

[7]  H. Terai,et al.  Short- versus long-segment posterior spinal fusion with vertebroplasty for osteoporotic vertebral collapse with neurological impairment in thoracolumbar spine: a multicenter study , 2020, BMC Musculoskeletal Disorders.

[8]  Wenbin Hua,et al.  Biomechanical Evaluation and the Assisted 3D Printed Model in the Patient-Specific Preoperative Planning for Thoracic Spinal Tuberculosis: A Finite Element Analysis , 2020, Frontiers in Bioengineering and Biotechnology.

[9]  B. Aarabi,et al.  Surgical Management of Thoracolumbar Burst Fractures: Surgical Decision-making Using the AOSpine Thoracolumbar Injury Classification Score and Thoracolumbar Injury Classification and Severity Score. , 2020, Clinical spine surgery.

[10]  V. Tandon,et al.  Advancements in osteoporotic spine fixation. , 2020, Journal of clinical orthopaedics and trauma.

[11]  J. Liao Impact of osteoporosis on different type of short-segment posterior instrumentation for thoracolumbar burst fracture - a finite element analysis. , 2020, World neurosurgery.

[12]  Baolin Wu,et al.  Treatment of Thoracolumbar Fractures Through Different Short Segment Pedicle Screw Fixation Techniques: A Finite Element Analysis , 2020, Orthopaedic surgery.

[13]  O. Gonschorek,et al.  Percutaneous versus open posterior stabilization in AOSpine type A3 thoracolumbar fractures , 2020, BMC Musculoskeletal Disorders.

[14]  D. Ahern,et al.  Timing of surgical fixation in traumatic spinal fractures: A systematic review. , 2020, The surgeon : journal of the Royal Colleges of Surgeons of Edinburgh and Ireland.

[15]  J. Liao,et al.  Short-Segment Instrumentation with Fractured Vertebrae Augmentation by Screws and Bone Substitute for Thoracolumbar Unstable Burst Fractures , 2019, BioMed research international.

[16]  H. Defino,et al.  Open versus minimally invasive percutaneous surgery for surgical treatment of thoracolumbar spine fractures- a multicenter randomized controlled trial: study protocol , 2019, BMC Musculoskeletal Disorders.

[17]  Osahiko Tsuji,et al.  Spinal fractures in diffuse idiopathic skeletal hyperostosis: Advantages of percutaneous pedicle screw fixation , 2019, Journal of orthopaedic surgery.

[18]  R. Natarajan,et al.  Biomechanical Analysis of a Long-Segment Fusion in a Lumbar Spine-A Finite Element Model Study. , 2018, Journal of biomechanical engineering.

[19]  Alpesh A. Patel,et al.  Spinal Reconstruction Techniques for Traumatic Spinal Injuries: A Systematic Review of Biomechanical Studies , 2018, Global spine journal.

[20]  N. Agarwal,et al.  Adjacent-segment disease after thoracic pedicle screw fixation. , 2017, Journal of neurosurgery. Spine.

[21]  Michelle Granville,et al.  Vertebral Compression Fractures after Lumbar Instrumentation , 2017, Cureus.

[22]  M. Fehlings,et al.  Does Surgical Intervention or Timing of Surgery Have an Effect on Neurological Recovery in the Setting of a Thoracolumbar Burst Fracture? , 2017, Journal of orthopaedic trauma.

[23]  J. Liao,et al.  Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis , 2017, BMC Musculoskeletal Disorders.

[24]  F. Galbusera,et al.  Finite element analysis of the lumbar destabilization following pedicle subtraction osteotomy. , 2016, Medical engineering & physics.

[25]  Alan H. Daniels,et al.  Biomechanical Analysis of Pedicle Screw Fixation for Thoracolumbar Burst Fractures. , 2016, Orthopedics.

[26]  F. Pellisé,et al.  Viability and long-term survival of short-segment posterior fixation in thoracolumbar burst fractures. , 2015, The spine journal : official journal of the North American Spine Society.

[27]  Alpesh A. Patel,et al.  Thoracolumbar Injury Classification and Injury Severity Score System: A Literature Review of Its Safety , 2015, Global spine journal.

[28]  P. Lechler,et al.  Percutaneous dorsal instrumentation for thoracolumbar extension-distraction fractures in patients with ankylosing spinal disorders: a case series. , 2014, The spine journal : official journal of the North American Spine Society.

[29]  L. Latta,et al.  Biomechanical analysis of four- versus six-screw constructs for short-segment pedicle screw and rod instrumentation of unstable thoracolumbar fractures. , 2014, The spine journal : official journal of the North American Spine Society.

[30]  S. Dhall,et al.  Traumatic thoracolumbar spinal injury: an algorithm for minimally invasive surgical management. , 2014, Neurosurgical focus.

[31]  S. Ohtori,et al.  Short-Segment Fixation Without Fusion for Thoracolumbar Burst Fractures With Neurological Deficit Can Preserve Thoracolumbar Motion Without Resulting in Post-traumatic Disc Degeneration: A 10-Year Follow-up Study , 2013, Spine.

[32]  Fabio Galbusera,et al.  Rigid and flexible spinal stabilization devices: a biomechanical comparison. , 2011, Medical engineering & physics.

[33]  N. Theodore,et al.  Biomechanics of thoracic short versus long fixation after 3-column injury. , 2011, Journal of neurosurgery. Spine.

[34]  T. Miyazaki,et al.  Vertebroplasty-augmented short-segment posterior fixation of osteoporotic vertebral collapse with neurological deficit in the thoracolumbar spine: comparisons with posterior surgery without vertebroplasty and anterior surgery. , 2010, Journal of neurosurgery. Spine.

[35]  J. Chapman,et al.  Spine Fractures in Patients With Ankylosing Spinal Disorders , 2010, Spine.

[36]  Hui-lin Yang,et al.  Long‐term results of thoracolumbar and lumbar burst fractures after short‐segment pedicle instrumentation, with special reference to implant failure and correction loss , 2009, Orthopaedic surgery.

[37]  F. Oner,et al.  Spinal fractures in patients with ankylosing spinal disorders: a systematic review of the literature on treatment, neurological status and complications , 2009, European Spine Journal.

[38]  R. Hurlbert,et al.  A New Classification of Thoracolumbar Injuries: The Importance of Injury Morphology, the Integrity of the Posterior Ligamentous Complex, and Neurologic Status , 2005, Spine.

[39]  C. Baunin,et al.  Personalised Mechanical Properties of Scoliotic Vertebrae Determined In Vivo Using Tomodensitometry , 2002, Computer methods in biomechanics and biomedical engineering.

[40]  R. Gaines,et al.  Successful short-segment instrumentation and fusion for thoracolumbar spine fractures: a consecutive 41/2-year series. , 2000, Spine.

[41]  S Etebar,et al.  Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. , 1999, Journal of neurosurgery.

[42]  William C. Hutton,et al.  Can Variations in Intervertebral Disc Height Affect the Mechanical Function of the Disc? , 1996, Spine.

[43]  S C Cowin,et al.  On the relationship between the orthotropic Young's moduli and fabric. , 1992, Journal of biomechanics.

[44]  D. Resnick,et al.  Association of diffuse idiopathic skeletal hyperostosis (DISH) and calcification and ossification of the posterior longitudinal ligament. , 1978, AJR. American journal of roentgenology.

[45]  M. Aebi,et al.  A comprehensive classification of thoracic and lumbar injuries , 2005, European Spine Journal.

[46]  Mindy Seering,et al.  Study protocol. , 1992, Occasional paper.