Mapping Urban Land Use at Street Block Level Using OpenStreetMap, Remote Sensing Data, and Spatial Metrics

Up-to-date and reliable land-use information is essential for a variety of applications such as planning or monitoring of the urban environment. This research presents a workflow for mapping urban land use at the street block level, with a focus on residential use, using very-high resolution satellite imagery and derived land-cover maps as input. We develop a processing chain for the automated creation of street block polygons from OpenStreetMap and ancillary data. Spatial metrics and other street block features are computed, followed by feature selection that reduces the initial datasets by more than 80%, providing a parsimonious, discriminative, and redundancy-free set of features. A random forest (RF) classifier is used for the classification of street blocks, which results in accuracies of 84% and 79% for five and six land-use classes, respectively. We exploit the probabilistic output of RF to identify and relabel blocks that have a high degree of uncertainty. Finally, the thematic precision of the residential blocks is refined according to the proportion of the built-up area. The output data and processing chains are made freely available. The proposed framework is able to process large datasets, given that the cities in the case studies, Dakar and Ouagadougou, cover more than 1000 km2 in total, with a spatial resolution of 0.5 m.

[1]  Chunyang Li Probability Estimation in Random Forests , 2013 .

[2]  J. Mennis Generating Surface Models of Population Using Dasymetric Mapping , 2003, The Professional Geographer.

[3]  Kevin McGarigal,et al.  Parsimony in landscape metrics: Strength, universality, and consistency , 2008 .

[4]  Sébastien Oliveau,et al.  Qualifier les espaces urbains à Dakar, Sénégal. Résultats préliminaires de l’approche croisée entre télédétection et données censitaires spatialisées , 2014 .

[5]  Marco Minghini,et al.  Tagging in Volunteered Geographic Information: An Analysis of Tagging Practices for Cities and Urban Regions in OpenStreetMap , 2016, ISPRS Int. J. Geo Inf..

[6]  Sabine Vanhuysse,et al.  A local segmentation parameter optimization approach for mapping heterogeneous urban environments using VHR imagery , 2017, Remote Sensing.

[7]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[8]  Taïs Grippa,et al.  Ouagadougou land use map at street block level , 2018 .

[9]  Mariana Belgiu,et al.  Random forest in remote sensing: A review of applications and future directions , 2016 .

[10]  Michael B. Lowry,et al.  Comparing spatial metrics that quantify urban form , 2014, Comput. Environ. Urban Syst..

[11]  E. Uuemaa,et al.  Trends in the use of landscape spatial metrics as landscape indicators: A review , 2013 .

[12]  Craig Schwabe,et al.  Getting geoinformation and SDI to work for Africa - Part 2 , 2010 .

[13]  Peng Gong,et al.  Mapping Urban Land Use by Using Landsat Images and Open Social Data , 2016, Remote. Sens..

[14]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[15]  Michael Batty,et al.  GIS and remote sensing as tools for the simulation of urban land‐use change , 2005 .

[16]  C. Aubrecht,et al.  Integrating earth observation and GIScience for high resolution spatial and functional modeling of urban land use , 2009, Comput. Environ. Urban Syst..

[17]  Sami Eria The state of GIS in developing countries: a diffusion and GIS & society analysis of Uganda, and the potential for mobile location-based services , 2012 .

[18]  Hannes Taubenböck,et al.  An automated and adaptable approach for characterizing and partitioning cities into urban structure types , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[19]  Anuar Ahmad,et al.  Geographic Information System and Spatial Data Infrastructure: A Developing Societies' Perception , 2014 .

[20]  Sabine Vanhuysse,et al.  An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification , 2017, Remote. Sens..

[21]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[22]  Jean-Michel Poggi,et al.  VSURF: An R Package for Variable Selection Using Random Forests , 2015, R J..

[23]  Lawrence A. West,et al.  Geographic Information Systems in Developing Countries: Issues in Data Collection, Implementation and Management , 2001, J. Glob. Inf. Manag..

[24]  K. McGarigal,et al.  FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. , 1995 .

[25]  A. Petrov,et al.  One Hundred Years of Dasymetric Mapping: Back to the Origin , 2012 .

[26]  Christiane Schmullius,et al.  Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level , 2014 .

[27]  Sabine Vanhuysse,et al.  SPUSPO: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Efficiently Segmenting Large Heterogeneous Areas , 2017 .

[28]  Taïs Grippa,et al.  Dakar very-high resolution land cover map , 2018 .

[29]  Taïs Grippa,et al.  Ouagadougou very-high resolution land cover map , 2018 .

[30]  Francisco J. Goerlich Gisbert,et al.  Clustering cities through urban metrics analysis , 2017 .

[31]  Sabine Vanhuysse,et al.  Contribution of nDSM derived from VHR stereo imagery to urban land-cover mapping in Sub-Saharan Africa , 2017, 2017 Joint Urban Remote Sensing Event (JURSE).

[32]  R. Gardner,et al.  Landscape Ecology in Theory and Practice , 2015, Springer New York.

[33]  Taïs Grippa Street blocks features computation , 2018 .

[34]  Rodolphe Devillers,et al.  Improving Volunteered Geographic Information Quality Using a Tag Recommender System: The Case of OpenStreetMap , 2015, OpenStreetMap in GIScience.

[35]  Arthur S. Lieberman,et al.  Landscape Ecology , 1994, Springer New York.

[36]  Jianguo Wu,et al.  A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA , 2004, Landscape Ecology.

[37]  R. Q. Feitosa,et al.  The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-4/C7 PER BLOCK URBAN LAND USE INTERPRETATION USING OPTICAL VHR DATA AND THE KNOWLEDGE-BASED SYSTEM INTERIMAGE , 2010 .

[38]  Thomas Blaschke,et al.  Geographic Object-Based Image Analysis – Towards a new paradigm , 2014, ISPRS journal of photogrammetry and remote sensing : official publication of the International Society for Photogrammetry and Remote Sensing.

[39]  A Siksna,et al.  The effects of block size and form in North American and Australian city centres , 1997 .

[40]  Ben Baumer,et al.  R Markdown: Integrating A Reproducible Analysis Tool into Introductory Statistics , 2014, 1402.1894.

[41]  Marco Minghini,et al.  Generating Up-to-Date and Detailed Land Use and Land Cover Maps Using OpenStreetMap and GlobeLand30 , 2017, ISPRS Int. J. Geo Inf..

[42]  Frank Canters,et al.  Mapping urban form and function at city block level using spatial metrics , 2017 .

[43]  M. Herold,et al.  The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses , 2002 .

[44]  Taïs Grippa,et al.  Dakar land use map at street block level , 2018 .

[45]  Xingjian Liu,et al.  Automated identification and characterization of parcels (AICP) with OpenStreetMap and Points of Interest , 2013, ArXiv.

[46]  Adam Millard-Ball,et al.  The world’s user-generated road map is more than 80% complete , 2017, PloS one.

[47]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[48]  M. Goodchild Citizens as sensors: the world of volunteered geography , 2007 .

[49]  G. Brent Hall,et al.  Open Source Approaches in Spatial Data Handling , 2008 .

[50]  Qiuping Li,et al.  Polygon-based approach for extracting multilane roads from OpenStreetMap urban road networks , 2014, Int. J. Geogr. Inf. Sci..

[51]  Taïs Grippa,et al.  OSM street blocks extraction , 2018 .

[52]  Alexander Zipf,et al.  A polygon-based approach for matching OpenStreetMap road networks with regional transit authority data , 2016, Int. J. Geogr. Inf. Sci..

[53]  Kevin McGarigal,et al.  Surface metrics: an alternative to patch metrics for the quantification of landscape structure , 2009, Landscape Ecology.

[54]  Christian Berger,et al.  From land cover-graphs to urban structure types , 2014, Int. J. Geogr. Inf. Sci..

[55]  Yuji Murayama,et al.  Integrating Geospatial Techniques for Urban Land Use Classification in the Developing Sub-Saharan African City of Lusaka, Zambia , 2017, ISPRS Int. J. Geo Inf..

[56]  Sabine Vanhuysse,et al.  Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application , 2018 .

[57]  Markus Neteler,et al.  Open Source GIS: A GRASS GIS Approach , 2007 .