A new multiobjective simulated annealing algorithm

A new multiobjective simulated annealing algorithm for continuous optimization problems is presented. The algorithm has an adaptive cooling schedule and uses a population of fitness functions to accurately generate the Pareto front. Whenever an improvement with a fitness function is encountered, the trial point is accepted, and the temperature parameters associated with the improving fitness functions are cooled. Beside well known linear fitness functions, special elliptic and ellipsoidal fitness functions, suitable for the generation on non-convex fronts, are presented. The effectiveness of the algorithm is shown through five test problems. The parametric study presented shows that more fitness functions as well as more iteration gives more non-dominated points closer to the actual front. The study also compares the linear and elliptic fitness functions. The success of the algorithm is also demonstrated by comparing the quality metrics obtained to those obtained for a well-known evolutionary multiobjective algorithm.

[1]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[2]  I. Postlethwaite,et al.  Simulated annealing for multi-objective control system design , 1996 .

[3]  Peter J. Fleming,et al.  Multiobjective gas turbine engine controller design using genetic algorithms , 1996, IEEE Trans. Ind. Electron..

[4]  Dušan Teodorović,et al.  Simulated annealing for the multi-objective aircrew rostering problem , 1999 .

[5]  Carlos A. Coello Coello,et al.  Guest editorial: special issue on evolutionary multiobjective optimization , 2003, IEEE Trans. Evol. Comput..

[6]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[7]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[8]  Ajay K. Ray,et al.  Multi-objective optimization of industrial hydrogen plants , 2001 .

[9]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[10]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[11]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[12]  B. Suman Simulated annealing-based multiobjective algorithms and their application for system reliability , 2003 .

[13]  P. Hajela Nongradient Methods in Multidisciplinary Design Optimization-Status and Potential , 1999 .

[14]  F. Y. Edgeworth Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences , 2007 .

[15]  Geoffrey T. Parks,et al.  Simulated annealing: An alternative approach to true multiobjective optimization , 1999 .

[16]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[17]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[18]  David G. Hull,et al.  Advanced launch system trajectory optimization using suboptimal control , 1993 .

[19]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[20]  Ping Lu,et al.  Nonsmooth trajectory optimization - An approach using continuous simulated annealing , 1994 .

[21]  Jacques Teghem,et al.  An interactive heuristic method for multi-objective combinatorial optimization , 2000, Comput. Oper. Res..

[22]  Steven N. Williams,et al.  Optimal Interplanetary Trajectories Via A Pareto Genetic Algorithm , 1998 .

[23]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[24]  Ozan Tekinalp,et al.  Simulated Annealing for Missile Trajectory Planning and Multidisciplinary Missile Design Optimization , 2000 .

[25]  Keith A. Seffen,et al.  A SIMULATED ANNEALING ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION , 2000 .

[26]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[27]  Ian Postlethwaite,et al.  Simulated annealing for multiobjective control system design , 1997 .

[28]  Shapour Azarm,et al.  Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set , 2001 .

[29]  C. Hargraves,et al.  DIRECT TRAJECTORY OPTIMIZATION USING NONLINEAR PROGRAMMING AND COLLOCATION , 1987 .

[30]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[31]  Patrick Siarry,et al.  Enhanced simulated annealing for globally minimizing functions of many-continuous variables , 1997, TOMS.

[32]  Kazuyuki Yoshimura,et al.  Performance evaluation of acceptance probability functions for multi-objective SA , 2003, Comput. Oper. Res..

[33]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[34]  Peter J. Fleming,et al.  Evolutionary Hinfin; design of an electromagnetic suspension control system for a maglev vehicle , 1997 .

[35]  O. Tekinalp,et al.  Simulated Annealing for Missile Optimization: Developing Method and Formulation Techniques , 2004 .

[36]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .