Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers

A detailed theoretical and experimental study of the influence of injector doping on the output characteristics and electron heating in midinfrared GaAs∕AlGaAs quantum cascade lasers is presented. The employed theoretical model of electron transport was based on a fully nonequilibrium self-consistent Schrodinger-Poisson analysis of the scattering rate and energy balance equations. Three different devices with injector sheet doping densities in the range of (4–6.5)×1011cm–2 have been grown and experimentally characterized. Optimized arsenic fluxes were used for the growth, resulting in high-quality layers with smooth surfaces and low defect densities. A quasilinear increase of the threshold current with sheet injector doping has been observed both theoretically and experimentally. The experimental and calculated current-voltage characteristics are in a very good agreement. A decrease of the calculated coupling constant of average electron temperature versus the pumping current with doping level was found.

[1]  C. Becker,et al.  Improved CW operation of GaAs-based QC lasers: T/sub max/= 150 K , 2004, IEEE Journal of Quantum Electronics.

[2]  F. Capasso,et al.  Quantum cascade lasers with a heterogeneous cascade: Two-wavelength operation , 2001 .

[3]  G. Strasser,et al.  Continuous-wave operation of distributed feedback AlAs/GaAs superlattice quantum-cascade lasers , 2000 .

[4]  R C Iotti,et al.  Nature of charge transport in quantum-cascade lasers. , 2001, Physical review letters.

[5]  Manijeh Razeghi,et al.  High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers , 2004 .

[6]  Mattias Beck,et al.  Low-loss Al-free waveguides for unipolar semiconductor lasers , 1999 .

[7]  Edmund Linfield,et al.  Terahertz emission from quantum cascade lasers in the quantum Hall regime: evidence for many body resonances and localization effects. , 2004, Physical review letters.

[8]  Federico Capasso,et al.  Threshold reduction in quantum cascade lasers with partially undoped, dual-wavelength interdigitated cascades , 2002 .

[9]  Johann Peter Reithmaier,et al.  Reduction of the threshold current density of GaAs/AlGaAs quantum cascade lasers by optimized injector doping and growth conditions , 2005 .

[10]  Wolfgang Bronner,et al.  GaInAs/AlGaAsSb quantum-cascade lasers , 2005 .

[11]  Thermal behavior of GaAs/AlGaAs quantum-cascade-lasers: effect of the Al content in the barrier layers , 2003, International Conference on Molecular Bean Epitaxy.

[12]  Werner Schrenk,et al.  High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers , 2003 .

[13]  Paul Harrison,et al.  Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers , 2002 .

[14]  Qing Hu,et al.  Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers , 2004 .

[15]  Theoretical analysis of spectral gain in a terahertz quantum-cascade laser: Prospects for gain at 1 THz , 2003, cond-mat/0308499.

[16]  Qing Hu,et al.  Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature , 2004 .

[17]  Trinesha Mosely,et al.  Third harmonic generation in a Quantum Cascade laser with monolithically integrated resonant optical nonlinearity. , 2004, Optics express.

[18]  Dmitry G. Revin,et al.  InGaAs∕AlAsSb quantum cascade lasers , 2004 .

[19]  Xavier Marcadet,et al.  Room temperature operation of InAs/AlSb quantum cascade lasers , 2004 .

[20]  Design and simulation of terahertz quantum cascade lasers , 2001, cond-mat/0110144.

[21]  Manijeh Razeghi,et al.  Continuous-wave operation of λ∼4.8μm quantum-cascade lasersat room temperature , 2004 .

[22]  Carlo Sirtori,et al.  Design strategies for GaAs-based unipolar lasers: Optimum injector-active region coupling via resonant tunneling , 2001 .

[23]  Wolfgang Bronner,et al.  GaInAs∕AlAsSb quantum-cascade lasers operating up to 400K , 2005 .

[24]  Federico Capasso,et al.  Raman injection laser , 2005, Nature.

[25]  Paul Harrison,et al.  Influence of leakage current on temperature performance of GaAs/AlGaAs quantum cascade lasers , 2002 .

[26]  H. Page,et al.  Optimised device processing for continuous-wave operation in GaAs-based quantum cascade lasers , 2003 .

[27]  Federico Capasso,et al.  Ultra-broadband semiconductor laser , 2002, Nature.

[28]  Erich Gornik,et al.  Room-temperature emission of GaAs/AlGaAs superlattice quantum-cascade lasers at 12.6 μm , 2002 .

[29]  Vincenzo Spagnolo,et al.  Simultaneous measurement of the electronic and lattice temperatures in GaAs/Al0.45Ga0.55As quantum-cascade lasers: Influence on the optical performance , 2004 .

[30]  O. Bonno,et al.  Modeling of electron–electron scattering in Monte Carlo simulation of quantum cascade lasers , 2005 .

[31]  A. Wacker,et al.  Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures , 2002 .

[32]  P. Harrison Quantum wells, wires, and dots : theoretical and computational physics , 2016 .

[33]  Cho,et al.  Bidirectional Semiconductor Laser. , 1999, Science.

[34]  M. Amann,et al.  Non-equilibrium electronic distribution within one period of InP-based quantum cascade lasers , 2004 .

[35]  E. Linfield,et al.  Mechanisms of dynamic range limitations in GaAs∕AlGaAs quantum-cascade lasers: Influence of injector doping , 2005 .

[36]  R. Hey,et al.  Lasing properties of GaAs/(Al,Ga)As quantum-cascade lasers as a function of injector doping density , 2003 .

[37]  Qing Hu,et al.  Terahertz quantum-cascade laser operating up to 137 K , 2003 .

[38]  Mattias Beck,et al.  GaAs/AlxGa1-xAs quantum cascade lasers , 1998 .

[39]  Xavier Marcadet,et al.  Intracavity sum-frequency generation in GaAs quantum cascade lasers , 2004 .

[40]  Paul Harrison,et al.  Physical model of quantum-well infrared photodetectors , 2004 .

[41]  Federico Capasso,et al.  Optimized second-harmonic generation in quantum cascade lasers , 2003 .

[42]  R. Hey,et al.  Dependence of lasing properties of GaAs/AlxGa1−xAs quantum cascade lasers on injector doping density: theory and experiment , 2004 .

[43]  Improved large optical cavity design for (Al)GaAs quantum cascade lasers , 2002 .

[44]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[45]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[46]  Edmund H. Linfield,et al.  2.9THz quantum cascade lasers operating up to 70K in continuous wave , 2004 .

[47]  Paul Harrison,et al.  Simulation and design of GaN/AlGaN far-infrared (λ∼34 μm) quantum-cascade laser , 2004 .

[48]  R. Hey,et al.  Effect of free-carrier absorption on the threshold current density of GaAs∕(Al,Ga)As quantum-cascade lasers , 2004 .

[49]  Carlo Sirtori,et al.  300 K operation of a GaAs-based quantum-cascade laser at λ≈9 μm , 2001 .

[50]  Hideo Ohno,et al.  An InAs-Based Intersubband Quantum Cascade Laser , 2002 .

[51]  M. Hopkinson,et al.  Room-temperature operation of an InAs–GaAs–AlAs quantum-cascade laser , 2003 .