Automatic Step-size Control in Wave Digital Simulation Using Passive Numerical Integration Methods

Summary Wave digital filter principles can be applied to the numerical solution of many kinds of differential equations. It has been shown that, by merging the wave digital concept with Runge-Kutta methods, algorithms of high accuracy can be found which are passive and hence possess a lot of desirable numerical stability properties. In this paper, we will discuss the applicability of step-size control within this framework.

[1]  Karlheinz Ochs,et al.  Passive Runge–Kutta Methods—Properties, Parametric Representation, and Order Conditions , 2003 .

[2]  Karlheinz Ochs,et al.  Generation of wave digital structures for connection networks containing ideal transformers , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[3]  Karlheinz Ochs,et al.  Synthesis and Design of Passive Runge-Kutta Methods , 2001 .

[4]  A. Fettweis Wave digital filters: Theory and practice , 1986, Proceedings of the IEEE.

[5]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[6]  K. Meerkotter,et al.  Digital simulation of nonlinear circuits by wave digital filter principles , 1989, IEEE International Symposium on Circuits and Systems,.

[7]  A. Fettweis,et al.  Discrete modelling of lossless fluid dynamic systems , 1992 .

[8]  T. Felderhoff,et al.  Simulation of nonlinear transmission lines by wave digital filter principles , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[9]  Y. Genin A new approach to the synthesis of stiffly stable linear multistep formulas , 1973 .

[10]  Kjell Gustafsson,et al.  Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods , 1991, TOMS.

[11]  Kjell Gustafsson,et al.  Control theoretic techniques for stepsize selection in explicit Runge-Kutta methods , 1991, TOMS.

[12]  Karlheinz Ochs,et al.  Numerical stability properties of passive Runge-Kutta methods , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[13]  G. Wanner,et al.  Runge-Kutta methods: some historical notes , 1996 .

[14]  Thomas Felderhoff A new approach to design A-stable linear multistep integration algorithms , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[15]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[16]  A. Fettweis,et al.  Numerical integration of partial differential equations by means of multidimensional wave digital filters , 1990, IEEE International Symposium on Circuits and Systems.

[17]  Karlheinz Ochs,et al.  Passive Integration Methods: Fundamental Theory , 2001 .

[18]  G. Dahlquist A special stability problem for linear multistep methods , 1963 .

[19]  H. D. Fischer,et al.  Wave digital filters for numerical integration , 1984 .

[20]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .