The Smallest Cubic Graphs of Girth Nine
暂无分享,去创建一个
[1] C. W. Evans. A second trivalent graph with 58 vertices and girth 9 , 1984, J. Graph Theory.
[2] R. Read. Every one a winner , 1978 .
[3] Norman L. Biggs,et al. A trivalent graph with 58 vertices and girth 9 , 1980, Discret. Math..
[4] Pak-Ken Wong,et al. Cages - a survey , 1982, J. Graph Theory.
[5] G. Brinkmann. Fast generation of cubic graphs , 1996 .
[6] R. M. Damerell. On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[8] R. Read. Every one a Winner or how to Avoid Isomorphism Search when Cataloguing Combinatorial Configurations , 1978 .
[9] R. Frucht,et al. Remarks On Finite Groups Defined By Generating Relations , 1955, Canadian Journal of Mathematics.