Visual Analytics for Development and Evaluation of Order Selection Criteria for Autoregressive Processes

Order selection of autoregressive processes is an active research topic in time series analysis, and the development and evaluation of automatic order selection criteria remains a challenging task for domain experts. We propose a visual analytics approach, to guide the analysis and development of such criteria. A flexible synthetic model generator-combined with specialized responsive visualizations-allows comprehensive interactive evaluation. Our fast framework allows feedback-driven development and fine-tuning of new order selection criteria in real-time. We demonstrate the applicability of our approach in three use-cases for two general as well as a real-world example.

[1]  Piet M. T. Broersen,et al.  On Finite Sample Theory for Autoregressive Model Order Selection , 1993, IEEE Trans. Signal Process..

[2]  Venkatakrishnan Perumalsamy,et al.  Sleep spindles detection from human sleep EEG signals using autoregressive (AR) model: a surrogate data approach , 2009 .

[3]  Ben Shneiderman,et al.  Dynamic Query Tools for Time Series Data Sets: Timebox Widgets for Interactive Exploration , 2004, Inf. Vis..

[4]  P. Djurić,et al.  Uniform random parameter generation of stable minimum-phase real ARMA (p,q) processes , 1997, IEEE Signal Processing Letters.

[5]  J. S. Erkelens,et al.  Autoregressive modeling for speech coding: Estimation, interpolation and quantization , 1996 .

[6]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[7]  Venus Khim-Sen Liew,et al.  On Autoregressive Order Selection Criteria , 2004 .

[8]  V. K. Liew Which Lag Length Selection Criteria Should We Employ? , 2006 .

[9]  Z. Asghar,et al.  Performance of lag length selection criteria in three different situations , 2007 .

[10]  Carlos A. Medel,et al.  Does BIC Estimate and Forecast Better than AIC , 2012 .

[11]  T. V. D. Hagen,et al.  Why Yule-Walker should not be used for autoregressive modelling , 1996 .

[12]  Fabrizio Dabbene,et al.  On the Generation of Random Stable Polynomials , 2011, Eur. J. Control.

[13]  G. U. Yule,et al.  The Foundations of Econometric Analysis: On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers ( Philosophical Transactions of the Royal Society of London , A, vol. 226, 1927, pp. 267–73) , 1995 .

[14]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[15]  Clifford M. Hurvich,et al.  Bias of the corrected AIC criterion for underfitted regression and time series models , 1991 .

[16]  J. Bronzino,et al.  Autoregressive and bispectral analysis techniques: EEG applications , 1990, IEEE Engineering in Medicine and Biology Magazine.

[17]  S. Miksch,et al.  Visual Analytics Methods to Guide Diagnostics for Time Series Model Predictions , 2014 .

[18]  Piet M. T. Broersen,et al.  Automatic Autocorrelation and Spectral Analysis , 2006 .

[19]  Piet M.T. Broersen,et al.  Finite sample theory for autoregressive model estimation , 1991 .

[20]  Silvia Miksch,et al.  Visual Analytics for Model Selection in Time Series Analysis , 2013, IEEE Transactions on Visualization and Computer Graphics.

[21]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[22]  S. Elaydi An introduction to difference equations , 1995 .

[23]  Evžen Kočenda,et al.  Elements of Time Series Econometrics: An Applied Approach , 2007 .

[24]  M. Karimi,et al.  Finite Sample AIC for Autoregressive Model Order Selection , 2007, 2007 IEEE International Conference on Signal Processing and Communications.

[25]  Menno-Jan Kraak,et al.  Visual exploration of time series of remote sensing data , 2005 .

[26]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[27]  Manish Marwah,et al.  A Visual Analytics Approach for Peak‐Preserving Prediction of Large Seasonal Time Series , 2011, Comput. Graph. Forum.

[28]  M. Karimi,et al.  Ship noise classification using Probabilistic Neural Network and AR model coefficients , 2005, Europe Oceans 2005.

[29]  James Durbin,et al.  The fitting of time series models , 1960 .

[30]  Piet M. T. Broersen,et al.  Finite sample criteria for autoregressive order selection , 2000, IEEE Trans. Signal Process..

[31]  Paulo César Emiliano,et al.  Information criteria: How do they behave in different models? , 2014, Comput. Stat. Data Anal..

[32]  Wolfgang Jank,et al.  Similarity-Based Forecasting with Simultaneous Previews: A River Plot Interface for Time Series Forecasting , 2007, 2007 11th International Conference Information Visualization (IV '07).

[33]  Piet M. T. Broersen,et al.  Automatic spectral analysis with time series models , 2002, IEEE Trans. Instrum. Meas..

[34]  D. Kalman Uncommon Mathematical Excursions: Polynomia and Related Realms , 2009 .

[35]  Ben Shneiderman,et al.  Interactive pattern search in time series , 2005, IS&T/SPIE Electronic Imaging.

[36]  Yanhui Feng,et al.  A CASE STUDY OF AUTOREGRESSIVE MODELLING AND ORDER SELECTION FOR A DRY VACUUM PUMP , 2005 .

[37]  Piet M. T. Broersen,et al.  Selecting the order of autoregressive models from small samples , 1985, IEEE Trans. Acoust. Speech Signal Process..

[38]  Qing Ye,et al.  USPIO‐enhanced dynamic MRI: Evaluation of normal and transplanted rat kidneys , 2001, Magnetic resonance in medicine.