Random Krylov Spaces over Finite Fields

Motivated by a connection with block iterative methods for solving linear systems over finite fields, we consider the probability that the Krylov space generated by a fixed linear mapping and a random set of elements in a vector space over a finite field equals the space itself. We obtain an exact formula for this probability and from it we derive good lower bounds that approach 1 exponentially fast as the size of the set increases.

[1]  G. Landsberg Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe. , 2022 .

[2]  D. Robinson A Course in the Theory of Groups , 1982 .

[3]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[4]  Brendan D. McKay,et al.  Determinants and ranks of random matrices over Zm , 1987, Discret. Math..

[5]  S. Weintraub,et al.  Algebra: An Approach via Module Theory , 1992 .

[6]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[7]  D. Coppersmith Solving linear equations over GF(2): block Lanczos algorithm , 1993 .

[8]  Erich Kaltofen,et al.  Factoring high-degree polynomials by the black box Berlekamp algorithm , 1994, ISSAC '94.

[9]  Carl Pomerance,et al.  The Development of the Number Field Sieve , 1994 .

[10]  Joachim von zur Gathen,et al.  Berlekamp's and niederreiter's polynomial factorization algorithms , 1994 .

[11]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[12]  Peter L. Montgomery,et al.  A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.

[13]  Shuhong Gao,et al.  Density of Normal Elements , 1997 .

[14]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[15]  Gilles Villard,et al.  Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.

[16]  Shuhong Gao,et al.  Factoring multivariate polynomials via partial differential equations , 2003, Math. Comput..