Random Krylov Spaces over Finite Fields
暂无分享,去创建一个
[1] G. Landsberg. Ueber eine Anzahlbestimmung und eine damit zusammenhängende Reihe. , 2022 .
[2] D. Robinson. A Course in the Theory of Groups , 1982 .
[3] Douglas H. Wiedemann. Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.
[4] Brendan D. McKay,et al. Determinants and ranks of random matrices over Zm , 1987, Discret. Math..
[5] S. Weintraub,et al. Algebra: An Approach via Module Theory , 1992 .
[6] Erich Kaltofen,et al. Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.
[7] D. Coppersmith. Solving linear equations over GF(2): block Lanczos algorithm , 1993 .
[8] Erich Kaltofen,et al. Factoring high-degree polynomials by the black box Berlekamp algorithm , 1994, ISSAC '94.
[9] Carl Pomerance,et al. The Development of the Number Field Sieve , 1994 .
[10] Joachim von zur Gathen,et al. Berlekamp's and niederreiter's polynomial factorization algorithms , 1994 .
[11] D. Coppersmith. Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .
[12] Peter L. Montgomery,et al. A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.
[13] Shuhong Gao,et al. Density of Normal Elements , 1997 .
[14] G. Villard. A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .
[15] Gilles Villard,et al. Further analysis of Coppersmith's block Wiedemann algorithm for the solution of sparse linear systems (extended abstract) , 1997, ISSAC.
[16] Shuhong Gao,et al. Factoring multivariate polynomials via partial differential equations , 2003, Math. Comput..