The microscopic origin of DMI in magnetic bilayers and prediction of giant DMI in new bilayers

[1]  Hong-bin Zhang,et al.  Strong hopping induced Dzyaloshinskii–Moriya interaction and skyrmions in elemental cobalt , 2019, npj Computational Materials.

[2]  S. Heinze,et al.  Isolated zero field sub-10 nm skyrmions in ultrathin Co films , 2019, Nature Communications.

[3]  P. Ho,et al.  Geometrically Tailored Skyrmions at Zero Magnetic Field in Multilayered Nanostructures , 2019, Physical Review Applied.

[4]  R. Frömter,et al.  Measuring the Dzyaloshinskii-Moriya interaction of the epitaxial Co/Ir(111) interface , 2019, Physical Review B.

[5]  Y. Tokura,et al.  Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet , 2018, Science.

[6]  Tetsuya Nakamura,et al.  Correlation of the Dzyaloshinskii–Moriya interaction with Heisenberg exchange and orbital asphericity , 2018, Nature Communications.

[7]  A. Fert,et al.  Advances in the Physics of Magnetic Skyrmions and Perspective for Technology , 2017, 1712.07236.

[8]  Xubing Lu,et al.  Magnetic field gradient driven dynamics of isolated skyrmions and antiskyrmions in frustrated magnets , 2017, 1712.03550.

[9]  E. Fullerton,et al.  Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films , 2017, 1711.07101.

[10]  F. Freimuth,et al.  Higher-dimensional Wannier interpolation for the modern theory of the Dzyaloshinskii-Moriya interaction: Application to Co-based trilayers , 2017, 1711.02657.

[11]  P. Ho,et al.  Geometrically Tailored Skyrmions at Zero Magnetic Field in Multilayered Nanostructures , 2017, Physical Review Applied.

[12]  J. Zang,et al.  Skyrmions in magnetic multilayers , 2017, 1706.08295.

[13]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[14]  R. C. Silva,et al.  Effects of second neighbor interactions on skyrmion lattices in chiral magnets , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  A. Fert,et al.  Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces , 2016, Nature.

[16]  F. Bechstedt,et al.  Hund's Rule-Driven Dzyaloshinskii-Moriya Interaction at 3d-5d Interfaces. , 2016, Physical review letters.

[17]  Gang Li,et al.  Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material , 2016, Science.

[18]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[19]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[20]  A. Fert,et al.  Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Field , 2016, Scientific Reports.

[21]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[22]  C. Batista,et al.  Bubble and skyrmion crystals in frustrated magnets with easy-axis anisotropy , 2016, 1601.02064.

[23]  Axel Hoffmann,et al.  Opportunities at the Frontiers of Spintronics , 2015 .

[24]  Yan Zhou,et al.  Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory , 2015, Scientific Reports.

[25]  C. You,et al.  Thickness dependence of the interfacial Dzyaloshinskii–Moriya interaction in inversion symmetry broken systems , 2015, Nature Communications.

[26]  R. Wiesendanger,et al.  Field-dependent size and shape of single magnetic Skyrmions. , 2015, Physical review letters.

[27]  S. Heinze,et al.  Engineering skyrmions in transition-metal multilayers for spintronics , 2015, Nature Communications.

[28]  T. Devolder,et al.  Interfacial Dzyaloshinskii-Moriya interaction in perpendicularly magnetized Pt/Co/AlO x ultrathin films measured by Brillouin light spectroscopy , 2015, 1503.00372.

[29]  A. Fert,et al.  Skyrmions at room temperature : From magnetic thin films to magnetic multilayers , 2015, 1502.07853.

[30]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[31]  A. Fert,et al.  Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces. , 2015, Physical review letters.

[32]  M. Mostovoy,et al.  Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet , 2015, Nature Communications.

[33]  C. Marrows,et al.  Measuring and tailoring the Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films , 2014 .

[34]  Y. Mokrousov,et al.  Dzyaloshinskii-Moriya interaction and chiral magnetism in 3d-5d zigzag chains: Tight-binding model and ab initio calculations , 2014, 1406.0294.

[35]  S. Parkin,et al.  Chiral spin torque arising from proximity-induced magnetization , 2014, Nature Communications.

[36]  G. M. Stocks,et al.  Spin-correlations and magnetic structure in an Fe monolayer on 5d transition metal surfaces , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  A. N’Diaye,et al.  Tailoring the chirality of magnetic domain walls by interface engineering , 2013, Nature Communications.

[38]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[39]  F. Freimuth,et al.  Berry phase theory of Dzyaloshinskii–Moriya interaction and spin–orbit torques , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  R. Wiesendanger,et al.  Writing and Deleting Single Magnetic Skyrmions , 2013, Science.

[41]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[42]  H. Kawamura,et al.  Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. , 2011, Physical review letters.

[43]  S. Heinze,et al.  Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .

[44]  M. Ezawa Giant Skyrmions stabilized by dipole-dipole interactions in thin ferromagnetic films. , 2010, Physical review letters.

[45]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[46]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[47]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[50]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[51]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[52]  A. Fert Magnetic and Transport Properties of Metallic Multilayers , 1991 .

[53]  P. Levy,et al.  Role of Anisotropic Exchange Interactions in Determining the Properties of Spin-Glasses , 1980 .

[54]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[55]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .

[56]  D. A. Smith New mechanisms for magnetic anisotropy in localised S-state moment materials , 1976 .

[57]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .