UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: positional requirements and role of the RNA polymerase alpha subunit linker.

The UP element stimulates transcription from the rrnB P1 promoter through a direct interaction with the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD). We investigated the effect on transcription from rrnB P1 of varying both the location of the UP element and the length of the alpha subunit interdomain linker, separately and in combination. Displacement of the UP element by a single turn of the DNA helix resulted in a large decrease in transcription from rrnB P1, while displacement by half a turn or two turns totally abolished UP element-dependent transcription. Deletions of six or more amino acids from within the alpha subunit linker resulted in a decrease in UP element-dependent stimulation, which correlated with decreased binding of alphaCTD to the UP element. Increasing the alpha linker length was less deleterious to RNA polymerase function at rrnB P1 but did not compensate for the decrease in activation that resulted from displacing the UP element. Our results suggest that the location of the UP element at rrnB P1 is crucial to its function and that the natural length of the alpha subunit linker is optimal for utilisation of the UP element at this promoter.

[1]  K. Murakami,et al.  Identification of an UP element within the IHF binding site at the PL1-PL2 tandem promoter of bacteriophage lambda. , 1996, Journal of molecular biology.

[2]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[3]  R. Gourse,et al.  Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. , 2001, Journal of molecular biology.

[4]  R. Ebright,et al.  Transcription Activation at Class II CAP-Dependent Promoters: Two Interactions between CAP and RNA Polymerase , 1996, Cell.

[5]  Mark S. Thomas,et al.  The Escherichia coli RNA polymerase α subunit linker: length requirements for transcription activation at CRP‐dependent promoters , 2000, The EMBO journal.

[6]  V. de Lorenzo,et al.  Active recruitment of σ54‐RNA polymerase to the Pu promoter of Pseudomonas putida: role of IHF and αCTD , 1998, The EMBO journal.

[7]  R. Gourse,et al.  Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. , 1991, Journal of molecular biology.

[8]  A. Ishihama,et al.  Protein-protein communication within the transcription apparatus , 1993, Journal of bacteriology.

[9]  H. Shinagawa,et al.  Crystal structure of the holliday junction DNA in complex with a single RuvA tetramer. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Gourse,et al.  Factor-independent activation of Escherichia coli rRNA transcription. I. Kinetic analysis of the roles of the upstream activator region and supercoiling on transcription of the rrnB P1 promoter in vitro. , 1991, Journal of molecular biology.

[11]  M. Slutsky,et al.  Recombinant RNA polymerase: inducible overexpression, purification and assembly of Escherichia coli rpo gene products. , 1990, Gene.

[12]  S. Aiyar,et al.  Escherichia coli Promoters with UP Elements of Different Strengths: Modular Structure of Bacterial Promoters , 1998, Journal of bacteriology.

[13]  R. Gourse,et al.  Factor independent activation of rrnB P1. An "extended" promoter with an upstream element that dramatically increases promoter strength. , 1994, Journal of molecular biology.

[14]  W. Bullock XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. , 1987 .

[15]  K. Severinov,et al.  Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution , 1999, Cell.

[16]  R. Ebright,et al.  Domain organization of RNA polymerase α subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding , 1994, Cell.

[17]  R. Ebright,et al.  DNA-binding determinants of the alpha subunit of RNA polymerase: novel DNA-binding domain architecture. , 1996, Genes & development.

[18]  R. Ebright,et al.  Transcription activation by catabolite activator protein (CAP). , 1999, Journal of molecular biology.

[19]  H. Aiba,et al.  An inactive open complex mediated by an UP element at Escherichia coli promoters. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  N. Fujita,et al.  Structural map of the alpha subunit of Escherichia coli RNA polymerase: structural domains identified by proteolytic cleavage. , 1995, Journal of molecular biology.

[21]  Robert Entriken,et al.  Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity , 1984, Nucleic Acids Res..

[22]  Structural requirements for the interdomain linker of alpha subunit of Escherichia coli RNA polymerase. , 2000, Biochemistry.

[23]  Younggyu Kim,et al.  Structural Organization of the RNA Polymerase-Promoter Open Complex , 2000, Cell.

[24]  R. Gourse,et al.  Expression of rRNA and tRNA genes in Escherichia coli: Evidence for feedback regulation by products of rRNA operons , 1983, Cell.

[25]  M. Shirakawa,et al.  Solution Structure of the Activator Contact Domain of the RNA Polymerase α Subunit , 1995, Science.

[26]  R. Gourse,et al.  Saturation mutagenesis of an Escherichia coli rRNA promoter and initial characterization of promoter variants , 1989, Journal of bacteriology.

[27]  N. Fujita,et al.  Mapping the cAMP receptor protein contact site on the α subunit of Escherichia coli RNA polymerase , 1992, Molecular microbiology.

[28]  J. Greenblatt,et al.  The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. , 2000, Genes & development.

[29]  R. Gourse,et al.  The C-terminal domain of the alpha subunit of Escherichia coli RNA polymerase is required for efficient rho-dependent transcription termination. , 1998, Journal of molecular biology.

[30]  N. Fujita,et al.  Identification of a subunit assembly domain in the alpha subunit of Escherichia coli RNA polymerase. , 1991, Journal of Molecular Biology.

[31]  R. Gourse,et al.  E.coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. , 1990, The EMBO journal.

[32]  S. Darst,et al.  Structure of the Escherichia coli RNA Polymerase α Subunit Amino-Terminal Domain , 1998 .

[33]  R. Gourse,et al.  Both fis-dependent and factor-independent upstream activation of the rrnB P1 promoter are face of the helix dependent. , 1992, Nucleic acids research.

[34]  F. Studier,et al.  Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. , 1986, Journal of molecular biology.

[35]  H. A. Boer,et al.  Growth-rate-dependent regulation of ribosome synthesis in E. coli: Expression of the lacZ and galK genes fused to ribosomal promoters , 1981, Cell.

[36]  R. Ebright,et al.  Bacterial promoter architecture: subsite structure of UP elements and interactions with the carboxy-terminal domain of the RNA polymerase alpha subunit. , 1999, Genes & development.

[37]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[38]  R. Gourse,et al.  Transcription of the Escherichia coli rrnB P1 promoter by the heat shock RNA polymerase (E sigma 32) in vitro , 1993, Journal of bacteriology.

[39]  A. Ishihama,et al.  Bipartite functional map of the E. coli RNA polymerase α subunit: Involvement of the C-terminal region in transcription activation by cAMP-CRP , 1991, Cell.

[40]  R. Ebright,et al.  Rapid RNA polymerase genetics: one-day, no-column preparation of reconstituted recombinant Escherichia coli RNA polymerase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Galizzi,et al.  Promoter architecture in the flagellar regulon of Bacillus subtilis: high-level expression of flagellin by the sigma D RNA polymerase requires an upstream promoter element. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Geiselmann,et al.  Participation of IHF and a distant UP element in the stimulation of the phage λ PL promoter , 1998, Molecular microbiology.

[43]  K. Severinov,et al.  Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. , 1993, Journal of Biological Chemistry.

[44]  R. Sauer Protein-DNA interactions , 1991 .

[45]  N. Grishin,et al.  Common fold in helix-hairpin-helix proteins. , 2000, Nucleic acids research.

[46]  S. Busby,et al.  Region 2.5 of the Escherichia coli RNA polymerase σ70 subunit is responsible for the recognition of the ‘extended −10’ motif at promoters , 1997, The EMBO journal.

[47]  Y. Kyōgoku,et al.  Interaction of the C-terminal domain of the E. coli RNA polymerase alpha subunit with the UP element: recognizing the backbone structure in the minor groove surface. , 2001, Journal of molecular biology.

[48]  R. Gourse,et al.  A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. , 1993, Science.

[49]  Y. Kyōgoku,et al.  Flexible linker in the RNA polymerase alpha subunit facilitates the independent motion of the C-terminal activator contact domain. , 1997, Journal of molecular biology.

[50]  R. Gourse,et al.  Identification of an UP element consensus sequence for bacterial promoters. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Ebright,et al.  Transcription activation at Class II CRP‐dependent promoters: identification of determinants in the C‐terminal domain of the RNA polymerase α subunit , 1998, The EMBO journal.

[52]  Fritz Eckstein,et al.  Nucleic acids and molecular biology , 1987 .

[53]  C. Turnbough,et al.  Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. , 1997, Science.

[54]  Jeffrey W. Roberts,et al.  Pribnow Box Recognition and Melting by Escherichia coli RNA Polymerase , 1997 .

[55]  J. Sullivan,et al.  Promoter recognition by Escherichia coli RNA polymerase: effects of the UP element on open complex formation and promoter clearance. , 1998, Biochemistry.

[56]  R. Gourse,et al.  DNA determinants of rRNA synthesis in E. coli: Growth rate dependent regulation, feedback inhibition, upstream activation, antitermination , 1986, Cell.

[57]  R. Gourse,et al.  Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. , 2001, Genes & development.

[58]  Richard H. Ebright,et al.  Promoter structure, promoter recognition, and transcription activation in prokaryotes , 1994, Cell.

[59]  R. Gourse,et al.  UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition , 2000, Molecular microbiology.