Symplectic multi-time step parareal algorithms applied to molecular dynamics

In this paper we propose a new parareal algorithm for parallelizing in time molecular dynamics problems. The original structure of this algorithm allows one to consider multi-time stepping, namely two levels of temporal discretization, providing a larger range for the fine and coarse solvers definition. We also prove the symplecticity of this method, which is an expected behavior of the molecular dynamics integrators. The relevance of this algorithm is numerically demonstrated by applying it to three-dimensional atomic lattices on parallel computer architectures. For lattices of more than 20000 atoms we get attractive speed-up with proper choice for the coarse solver definition and for the number of processors.

[1]  Takao Yamazaki,et al.  A domain decomposition parallelization strategy for molecular dynamics simulations on distributed memory machines , 1993 .

[2]  Jaroslav M. Ilnytskyi,et al.  A domain decomposition molecular dynamics program for the simulation of flexible molecules with an arbitrary topology of Lennard–Jones and/or Gay–Berne sites , 2001 .

[3]  Jürg Nievergelt,et al.  Parallel methods for integrating ordinary differential equations , 1964, CACM.

[4]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[5]  Alberto L. Sangiovanni-Vincentelli,et al.  The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[7]  Vladimir Igorevich Arnolʹd,et al.  Équations différentielles ordinaires , 1974 .

[8]  W. Miranker,et al.  Parallel methods for the numerical integration of ordinary differential equations , 1967 .

[9]  William Smith,et al.  Molecular dynamics on hypercube parallel computers , 1991 .

[10]  Jean-Jacques Greffet,et al.  Heat transfer between two nanoparticles through near field interaction. , 2005, Physical review letters.

[11]  B. C. Daly,et al.  Molecular dynamics calculation of the thermal conductivity of superlattices , 2002 .

[12]  Ulrich Langer,et al.  Domain decomposition methods in science and engineering XVII , 2008 .

[13]  Martin J. Gander,et al.  Analysis of the Parareal Time-Parallel Time-Integration Method , 2007, SIAM J. Sci. Comput..

[14]  Guillaume Bal,et al.  On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations , 2005 .

[15]  Sebastian Volz,et al.  Molecular-dynamics simulation of thermal conductivity of silicon crystals , 2000 .

[16]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[17]  Sebastian Volz,et al.  Microscale and nanoscale heat transfer , 2006 .

[18]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .