Functional expression of the nitrogenase Fe protein in transgenic rice

[1]  L. Seefeldt,et al.  A colorimetric method to measure in vitro nitrogenase functionality for engineering nitrogen fixation , 2022, Scientific Reports.

[2]  Stefan Burén,et al.  Analysis of Nitrogenase Fe Protein Activity in Transplastomic Tobacco , 2021, Frontiers in Agronomy.

[3]  I. García-Rubio,et al.  Exploiting genetic diversity and gene synthesis to identify superior nitrogenase NifH protein variants to engineer N2-fixation in plants , 2021, Communications biology.

[4]  P. Christou,et al.  Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming , 2020, Proceedings of the National Academy of Sciences.

[5]  L. Seefeldt,et al.  Reduction of Substrates by Nitrogenases. , 2020, Chemical reviews.

[6]  E. Caro,et al.  Use of synthetic biology tools to optimize the production of active nitrogenase Fe protein in chloroplasts of tobacco leaf cells , 2020, Plant biotechnology journal.

[7]  Stefan Burén,et al.  Biosynthesis of Nitrogenase Cofactors , 2020, Chemical reviews.

[8]  Christopher A. Voigt,et al.  Control of nitrogen fixation in bacteria that associate with cereals , 2019, Nature Microbiology.

[9]  Christopher A. Voigt,et al.  Biosynthesis of the nitrogenase active-site cofactor precursor NifB-co in Saccharomyces cerevisiae , 2019, Proceedings of the National Academy of Sciences.

[10]  P. Christou,et al.  Recognition motifs rather than phylogenetic origin influence the ability of targeting peptides to import nuclear-encoded recombinant proteins into rice mitochondria , 2019, Transgenic Research.

[11]  Luis M. Rubio,et al.  Extreme bioengineering to meet the nitrogen challenge , 2018, Proceedings of the National Academy of Sciences.

[12]  J. Eisen,et al.  Nitrogen fixation in a landrace of maize is supported by a mucilage-associated diazotrophic microbiota , 2018, PLoS biology.

[13]  J. W. Peters,et al.  Exploring the alternatives of biological nitrogen fixation. , 2018, Metallomics : integrated biometal science.

[14]  R. Dixon,et al.  Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity , 2017, Proceedings of the National Academy of Sciences.

[15]  K. Alleva,et al.  Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940. , 2016, Environmental microbiology.

[16]  M. Stephens,et al.  Expression of Active Subunit of Nitrogenase via Integration into Plant Organelle Genome , 2016, PloS one.

[17]  P. Christou,et al.  CRISPR/Cas9 activity in the rice OsBEIIb gene does not induce off-target effects in the closely related paralog OsBEIIa , 2016, Molecular Breeding.

[18]  R. D. Britt,et al.  Electron Paramagnetic Resonance Characterization of Three Iron-Sulfur Clusters Present in the Nitrogenase Cofactor Maturase NifB from Methanocaldococcus infernus. , 2016, Journal of the American Chemical Society.

[19]  L. M. Rubio,et al.  Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast , 2016, Nature Communications.

[20]  Christopher A. Voigt,et al.  Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes , 2016, Applied and Environmental Microbiology.

[21]  H. Kronzucker,et al.  Bioengineering Nitrogen Acquisition in Rice: Promises for Global Food Security , 2015 .

[22]  L. Curatti,et al.  Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. , 2014, Plant science : an international journal of experimental plant biology.

[23]  S. Polasky,et al.  A tradeoff frontier for global nitrogen use and cereal production , 2014 .

[24]  Shenghui Cui,et al.  Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010) , 2013, Proceedings of the National Academy of Sciences.

[25]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[26]  Chao Bai,et al.  Combinatorial genetic transformation of cereals and the creation of metabolic libraries for the carotenoid pathway. , 2012, Methods in molecular biology.

[27]  R. D. Britt,et al.  Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor , 2008, Proceedings of the National Academy of Sciences.

[28]  L. Curatti,et al.  Evidence for nifU and nifS Participation in the Biosynthesis of the Iron-Molybdenum Cofactor of Nitrogenase* , 2007, Journal of Biological Chemistry.

[29]  L. Curatti,et al.  In vitro synthesis of the iron–molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins , 2007, Proceedings of the National Academy of Sciences.

[30]  Mary C. Corbett,et al.  FeMo cofactor maturation on NifEN , 2006, Proceedings of the National Academy of Sciences.

[31]  L. Pulakat,et al.  Peptidyl-Prolyl cis/trans Isomerase-Independent Functional NifH Mutant of Azotobacter vinelandii , 2006, Journal of bacteriology.

[32]  J. Balk,et al.  Biogenesis of iron-sulfur proteins in plants. , 2005, Trends in plant science.

[33]  D. Dean,et al.  NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii. , 2005, Biochemical Society transactions.

[34]  D. Kahn,et al.  Genetic regulation of biological nitrogen fixation , 2004, Nature Reviews Microbiology.

[35]  Yilin Hu,et al.  Formation and insertion of the nitrogenase iron-molybdenum cofactor. , 2004, Chemical reviews.

[36]  J. Ladha,et al.  Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen , 1997, Plant and Soil.

[37]  P. Ludden,et al.  Accumulation of 99Mo-containing Iron-Molybdenum Cofactor Precursors of Nitrogenase on NifNE, NifH, and NifX ofAzotobacter vinelandii * , 2002, The Journal of Biological Chemistry.

[38]  F. Chapin,et al.  Principles of Terrestrial Ecosystem Ecology , 2002, Springer New York.

[39]  J. Agar,et al.  NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Toshimichi Ikemura,et al.  Codon usage tabulated from international DNA sequence databases: status for the year 2000 , 2000, Nucleic Acids Res..

[41]  D. Rees,et al.  Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. , 1992, Science.

[42]  M. Merrick,et al.  The roles of the nifW, nifZ and nifM genes of Klebsiella pneumoniae in nitrogenase biosynthesis. , 1989, European Journal of Biochemistry.

[43]  W. Orme-Johnson,et al.  Klebsiella pneumoniae nifM gene product is required for stabilization and activation of nitrogenase iron protein in Escherichia coli. , 1986, The Journal of biological chemistry.

[44]  W. A. Bulen,et al.  The nitrogenase system from Azotobacter: two-enzyme requirement for N2 reduction, ATP-dependent H2 evolution, and ATP hydrolysis. , 1966, Proceedings of the National Academy of Sciences of the United States of America.