Introducing Preference-Based Argumentation to Inconsistent Ontological Knowledge Bases

Handling inconsistency is an inherent part of decision making in traditional agri-food chains – due to the various concerns involved. In order to explain the source of inconsistency and represent the existing conflicts in the ontological knowledge base, argumentation theory can be used. However, the current state of art methodology does not allow to take into account the level of significance of the knowledge expressed by the various ontological knowledge sources. We propose to use preferences in order to model those differences between formulas and evaluate our proposal practically by implementing it within the INRA platform and showing a use case using this formalism in a bread making decision support system.

[1]  Abdallah Arioua,et al.  Query Failure Explanation in Inconsistent Knowledge Bases Using Argumentation , 2014, COMMA.

[2]  Meghyn Bienvenu,et al.  On the Complexity of Consistent Query Answering in the Presence of Simple Ontologies , 2012, AAAI.

[3]  Thomas Lukasiewicz,et al.  Inconsistency Handling in Datalog+/- Ontologies , 2012, ECAI.

[4]  Martin Caminada,et al.  On the evaluation of argumentation formalisms , 2007, Artif. Intell..

[5]  Sheila A. McIlraith,et al.  Peer-to-Peer Query Answering with Inconsistent Knowledge , 2008, KR.

[6]  Abdallah Arioua,et al.  Query Failure Explanation in Inconsistent Knowledge Bases: A Dialogical Approach , 2014, SGAI Conf..

[7]  Srdjan Vesic,et al.  Rich preference-based argumentation frameworks , 2014, Int. J. Approx. Reason..

[8]  Claudette Cayrol,et al.  Inferring from Inconsistency in Preference-Based Argumentation Frameworks , 2002, Journal of Automated Reasoning.

[9]  Maurizio Lenzerini,et al.  Inconsistency-Tolerant Semantics for Description Logic Ontologies (Extended Abstract) , 2011, SEBD.

[10]  Souhila Kaci Refined Preference-based Argumentation Frameworks , 2010, COMMA.

[11]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[12]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[13]  Didier Dubois,et al.  Argumentative inference in uncertain and inconsistent knowledge bases , 1993, UAI.

[14]  Madalina Croitoru,et al.  Conflicting viewpoint relational database querying: an argumentation approach , 2014, AAMAS.

[15]  Franz Baader,et al.  Pushing the EL Envelope , 2005, IJCAI.

[16]  Abdallah Arioua,et al.  On Conceptual Graphs and Explanation of Query Answering under Inconsistency , 2014, ICCS.

[17]  Jeff Z. Pan,et al.  An Argument-Based Approach to Using Multiple Ontologies , 2009, SUM.

[18]  François Goasdoué,et al.  Querying Inconsistent Description Logic Knowledge Bases under Preferred Repair Semantics , 2014, Description Logics.

[19]  Henry Prakken,et al.  A general account of argumentation with preferences , 2013, Artif. Intell..

[20]  Madalina Croitoru,et al.  What Can Argumentation Do for Inconsistent Ontology Query Answering? , 2013, SUM.

[21]  Thomas Lukasiewicz,et al.  Complexity of Inconsistency-Tolerant Query Answering in Datalog+/- under Cardinality-Based Repairs , 2019, SEBD.

[22]  Maurizio Lenzerini,et al.  Inconsistency-Tolerant Semantics for Description Logics , 2010, RR.

[23]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[24]  Madalina Croitoru,et al.  Decision support for agri-food chains: A reverse engineering argumentation-based approach , 2015, Ecol. Informatics.

[25]  Jan Chomicki,et al.  Preference-Driven Querying of Inconsistent Relational Databases , 2006, EDBT Workshops.

[26]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[27]  Anthony Hunter,et al.  Elements of Argumentation , 2007, ECSQARU.