Forward Apportionment of Censored Counts for Discrete Nonparametric Maximum Likelihood Estimation of Failure Probabilities

Empirical cumulative lifetime distribution function is often required for selecting lifetime distribution. When some test items are censored from testing before failure, this function needs to be estimated, often via the approach of discrete nonparametric maximum likelihood estimation (DN-MLE). In this approach, this empirical function is expressed as a discrete set of failure-probability estimates. Kaplan and Meier used this approach and obtained a product-limit estimate for the survivor function, in terms exclusively of the hazard probabilities, and the equivalent failure-probability estimates. They cleverly expressed the likelihood function as the product of terms each of which involves only one hazard probability ease of derivation, but the estimates for failure probabilities are complex functions of hazard probabilities. Because there are no closed-form expressions for the failure probabilities, the estimates have been calculated numerically. More importantly, it has been difficult to study the behav...