Sandwiching saturation number of fullerene graphs

The saturation number of a graph G is the cardinality of any smallest maximal matching of G, and it is denoted by s(G). Fullerene graphs are cubic planar graphs with exactly twelve 5-faces; all the other faces are hexagons. They are used to capture the structure of carbon molecules. Here we show that the saturation number of fullerenes on n vertices is essentially n/3.

[1]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[2]  Michele Zito Small Maximal Matchings in Random Graphs , 2000, LATIN.

[3]  Sean Daugherty Independent sets and closed-shell independent sets of fullerenes , 2010 .

[4]  Louis Esperet,et al.  Exponentially many perfect matchings in cubic graphs , 2011 .

[5]  Pierre Hansen,et al.  Facts and Conjectures about Fullerene Graphs: Leapfrog, Cylinder and Ramanujan Fullerenes , 2001 .

[6]  Riste Škrekovski,et al.  On the diameter and some related invariants of fullerene graphs , 2012 .

[7]  Sulamita Klein,et al.  Odd Cycle Transversals and Independent Sets in Fullerene Graphs , 2012, SIAM J. Discret. Math..

[8]  Branko Grünbaum,et al.  The Number of Hexagons and the Simplicity of Geodesics on Certain Polyhedra , 1963, Canadian Journal of Mathematics.

[9]  Zdenek Dvorak,et al.  Bipartizing fullerenes , 2011, Eur. J. Comb..

[10]  Joseph Malkevitch,et al.  Geometrical and combinatorial questions about fullerenes , 1998, Discrete Mathematical Chemistry.

[11]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[12]  Craig E. Larson,et al.  Graph-Theoretic Independence as a Predictor of Fullerene Stability , 2003 .

[13]  Jean-Sébastien Sereni,et al.  Fullerene graphs have exponentially many perfect matchings , 2009 .

[14]  Tomislav Doslic,et al.  Computing the bipartite edge frustration of fullerene graphs , 2007, Discret. Appl. Math..

[15]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[16]  T. Došlić Bipartivity of fullerene graphs and fullerene stability , 2005 .

[17]  Riste Škrekovski,et al.  Cyclic 7-edge-cuts in fullerene graphs , 2008 .

[18]  Paul D. Seymour,et al.  Perfect matchings in planar cubic graphs , 2012, Comb..

[19]  Jane Zundel MATCHING THEORY , 2011 .

[20]  Rushmir Mahmutćehajić Paths , 2014, The Science of Play.

[21]  Riste Škrekovski,et al.  Cyclic edge-cuts in fullerene graphs , 2008 .

[22]  Robin Thomas,et al.  Independent sets in triangle-free cubic planar graphs , 2006, J. Comb. Theory, Ser. B.

[23]  Tomislav Došlić Saturation number of fullerene graphs , 2008 .

[24]  Joseph Douglas Horton,et al.  Minimum Edge Dominating Sets , 1993, SIAM J. Discret. Math..