The catalyst in the CCVD of carbon nanotubes—a review

[1]  L. Pan,et al.  In Situ Study of Iron Catalysts for Carbon Nanotube Growth Using X-Ray Diffraction Analysis , 2004 .

[2]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[3]  D. Resasco,et al.  Loss of single-walled carbon nanotubes selectivity by disruption of the Co-Mo interaction in the catalyst , 2004 .

[4]  G. Duesberg,et al.  Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes at 600 °C and a Simple Growth Model , 2004 .

[5]  Y. Shibuta,et al.  Molecular dynamics simulation of formation process of single-walled carbon nanotubes by CCVD method , 2003 .

[6]  Z. Iqbal,et al.  Is molybdenum necessary for the growth of single-wall carbon nanotubes from CO? , 2003 .

[7]  H. Dai,et al.  Ballistic Transport in Metallic Nanotubes with Reliable Pd Ohmic Contacts , 2003, cond-mat/0309044.

[8]  Shigeo Maruyama,et al.  Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates , 2003 .

[9]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[10]  Xinli Zhu,et al.  Effect of Catalyst Preparation on Carbon Nanotube Growth , 2003 .

[11]  M. Varela,et al.  Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition , 2003 .

[12]  S. Maruyama,et al.  Characterization of single-walled carbon nanotubes catalytically synthesized from alcohol , 2003 .

[13]  S. Yu,et al.  Comparison of source gases and catalyst metals for growth of carbon nanotube , 2003 .

[14]  Luigi Occhipinti,et al.  Growth mechanisms in chemical vapour deposited carbon nanotubes , 2003 .

[15]  Y. Chen,et al.  High-yield production of quasi-aligned carbon nanotubes by catalytic decomposition of benzene , 2003 .

[16]  A. Guerrero-Ruíz,et al.  Characterization of carbon nanotubes and carbon nanofibers prepared by catalytic decomposition of acetylene in a fluidized bed reactor , 2003 .

[17]  M. Dresselhaus,et al.  Smallest Freestanding Single-Walled Carbon Nanotube , 2003 .

[18]  Q. Jia,et al.  Effect of catalyst composition on carbon nanotube growth , 2003 .

[19]  C. Andreazza-Vignolle,et al.  Thermal stability of metal nanoclusters formed by low-pressure plasma sputtering , 2003 .

[20]  T. Hirao,et al.  Formation of Graphite Layers during Carbon Nanotubes Growth , 2003 .

[21]  R. J. Luyken,et al.  Concepts for hybrid CMOS-molecular non-volatile memories , 2003 .

[22]  Sashiro Uemura,et al.  Ink-jet printing of nanoparticle catalyst for site-selective carbon nanotube growth , 2003 .

[23]  Bin Chen,et al.  Carbon nanotube networks by chemical vapor deposition , 2003 .

[24]  Wolfgang Hoenlein,et al.  Growth of isolated carbon nanotubes with lithographically defined diameter and location , 2003 .

[25]  S. Eichhorn,et al.  The influence of the substrate on the growth of carbon nanotubes from nickel clusters: an investigation using STM, FE-SEM, TEM and Raman spectroscopy , 2003 .

[26]  Chih-Ming Hsu,et al.  Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD , 2002 .

[27]  H. Baik,et al.  Growth control of single and multi-walled carbon nanotubes by thin film catalyst , 2002 .

[28]  C. Berger,et al.  Room Temperature Ballistic Conduction in Carbon Nanotubes , 2002, cond-mat/0211515.

[29]  J. Kenny,et al.  Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: Role of nitrogen and catalyst layer thickness , 2002 .

[30]  M. Yumura,et al.  Carbon nanotube synthesis using colloidal solution of metal nanoparticles , 2002 .

[31]  C. Grimes,et al.  Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene , 2002 .

[32]  Y. S. Cho,et al.  Carbon nanotube synthesis using a magnetic fluid via thermal chemical vapor deposition , 2002 .

[33]  P. Serp,et al.  Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor , 2002 .

[34]  T. Arie,et al.  Quantitative Analysis of the Magnetic Properties of Metal-Capped Carbon Nanotube Probe , 2002 .

[35]  T. Ichihashi,et al.  Chemical vapor deposition of single-wall carbon nanotubes on iron-film-coated sapphire substrates , 2002 .

[36]  Masamichi Kohno,et al.  Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol , 2002 .

[37]  M. Libera,et al.  Growth of single-wall carbon nanotubes within an ordered array of nanosize silica spheres , 2002 .

[38]  S. Roche,et al.  Batch processing of nanometer-scale electrical circuitry based on in-situ grown single-walled carbon nanotubes , 2002 .

[39]  Yiming Li,et al.  Synthesis of Ultralong and High Percentage of Semiconducting Single-walled Carbon Nanotubes , 2002 .

[40]  L. Chernozatonskii,et al.  Correlation between metal catalyst particle size and carbon nanotube growth , 2002 .

[41]  P. Eklund,et al.  CVD Synthesis of Single Wall Carbon Nanotubes under ``soft" Conditions , 2002 .

[42]  H. Boyen,et al.  Influence of iron–silicon interaction on the growth of carbon nanotubes produced by chemical vapor deposition , 2002 .

[43]  Michael P. Siegal,et al.  Precise control of multiwall carbon nanotube diameters using thermal chemical vapor deposition , 2002 .

[44]  M. Meyyappan,et al.  Heterogeneous Single-Walled Carbon Nanotube Catalyst Discovery and Optimization , 2002 .

[45]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[46]  W. C. Tjiu,et al.  Growth of vertically aligned carbon-nanotube array on large area of quartz plates by chemical vapor deposition , 2002 .

[47]  Jie Liu,et al.  CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst , 2002 .

[48]  H. Dai,et al.  Imaging as-grown single-walled carbon nanotubes originated from isolated catalytic nanoparticles , 2002 .

[49]  P. Parilla,et al.  A Temperature Window for Chemical Vapor Decomposition Growth of Single-Wall Carbon Nanotubes , 2002 .

[50]  Charles M. Lieber,et al.  Diameter-Controlled Synthesis of Carbon Nanotubes , 2002 .

[51]  Angela D. Lueking,et al.  Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage , 2002 .

[52]  G. Amaratunga,et al.  Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy , 2002 .

[53]  P. Ajayan,et al.  Carbon nanotube network growth on palladium seeds , 2002 .

[54]  Hongjie Dai,et al.  Patterned growth of single-walled carbon nanotubes on full 4-inch wafers , 2001 .

[55]  K. Tan,et al.  Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts , 2001 .

[56]  R. L. Wal,et al.  Substrate–support interactions in metal-catalyzed carbon nanofiber growth , 2001 .

[57]  Bin Chen,et al.  Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth , 2001 .

[58]  D. Resasco,et al.  Relationship between the Structure/Composition of Co-Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by CO Disproportionation , 2001 .

[59]  John Robertson,et al.  Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition , 2001 .

[60]  H. Dai,et al.  Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes , 2001 .

[61]  C. Klinke,et al.  Comparative study of the catalytic growth of patterned carbon nanotube films , 2001, cond-mat/0508112.

[62]  M. Yumura,et al.  Gas-Phase Synthesis of Single-wall Carbon Nanotubes from Colloidal Solution of Metal Nanoparticles , 2001 .

[63]  Gehan A. J. Amaratunga,et al.  Uniform patterned growth of carbon nanotubes without surface carbon , 2001 .

[64]  M. A. Ermakova,et al.  Decomposition of Methane over Iron Catalysts at the Range of Moderate Temperatures: The Influence of Structure of the Catalytic Systems and the Reaction Conditions on the Yield of Carbon and Morphology of Carbon Filaments , 2001 .

[65]  Yun-Hsiang Wang,et al.  Synthesis of large area aligned carbon nanotube arrays from C2H2–H2 mixture by rf plasma-enhanced chemical vapor deposition , 2001 .

[66]  J. P. Pinheiro,et al.  Chemical state of a supported iron-cobalt catalyst during CO disproportionation: I. Thermodynamic study , 2001 .

[67]  I. Kiricsi,et al.  UV–VIS investigations on Co, Fe and Ni incorporated into sol–gel SiO2–TiO2 matrices , 2001 .

[68]  Mauricio Terrones,et al.  Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols , 2001 .

[69]  D. Resasco,et al.  Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO , 2001 .

[70]  Kun-Hong Lee,et al.  Template-based carbon nanotubes and their application to a field emitter , 2001 .

[71]  Zhong Lin Wang,et al.  Preparation of Monodispersed Fe−Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes , 2001 .

[72]  P. Ajayan,et al.  Substrate-site selective growth of aligned carbon nanotubes , 2000 .

[73]  O. Zhou,et al.  Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition , 2000 .

[74]  Jeunghee Park,et al.  Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst , 2000 .

[75]  Otto Zhou,et al.  Plasma-induced alignment of carbon nanotubes , 2000 .

[76]  H. Dai,et al.  Carbon nanotube arrays on silicon substrates and their possible application , 2000 .

[77]  J. Jiao,et al.  Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods , 2000 .

[78]  M. Yumura,et al.  Dispersion of metal nanoparticles for aligned carbon nanotube arrays , 2000 .

[79]  Abel Rousset,et al.  High specific surface area carbon nanotubes from catalytic chemical vapor deposition process , 2000 .

[80]  Jie Liu,et al.  Lattice-Oriented Growth of Single-Walled Carbon Nanotubes , 2000 .

[81]  J. Nagy,et al.  Production of nanotubes by the catalytic decomposition of different carbon-containing compounds , 2000 .

[82]  Ming Su,et al.  A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity , 2000 .

[83]  G. Park,et al.  Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition , 2000 .

[84]  T. Arie,et al.  Carbon-nanotube probe equipped magnetic force microscope , 2000 .

[85]  Daniel E. Resasco,et al.  Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co–Mo catalysts , 2000 .

[86]  Janos B. Nagy,et al.  Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method , 2000 .

[87]  J. Nagy,et al.  Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons , 2000 .

[88]  Elizabeth C. Dickey,et al.  Model of carbon nanotube growth through chemical vapor deposition , 1999 .

[89]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[90]  A. Ding,et al.  Formation mechanism of single-wall carbon nanotubes on liquid-metal particles , 1999 .

[91]  F. Illas,et al.  Electronic Effects in the Activation of Supported Metal Clusters: Density Functional Theory Study of H2 Dissociation on Cu/SiO2 , 1999 .

[92]  Alan M. Cassell,et al.  Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes , 1999 .

[93]  S. Tsai,et al.  Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis , 1999 .

[94]  E. Ruckenstein,et al.  High-Resolution Transmission Electron Microscopy Study of Carbon Deposited on the NiO/MgO Solid Solution Catalysts , 1999 .

[95]  A. Rousset,et al.  Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions , 1999 .

[96]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[97]  Zhifeng Ren,et al.  Growth of Highly-Oriented Carbon Nanotubes by Plasma-Enhanced Hot Filament Chemical Vapor Deposition , 1998 .

[98]  M. Siegal,et al.  Synthesis of large arrays of well-aligned carbon nanotubes on glass , 1998, Science.

[99]  C. Rao,et al.  Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures , 1998 .

[100]  Alan M. Cassell,et al.  Chemical vapor deposition of methane for single-walled carbon nanotubes , 1998 .

[101]  S. Xie,et al.  Very long carbon nanotubes , 1998, Nature.

[102]  M. Dresselhaus,et al.  Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons , 1998 .

[103]  A. Cutler,et al.  CARBON DEPOSITION AND HYDROCARBON FORMATION ON GROUP VIII METAL CATALYSTS , 1998 .

[104]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[105]  Anthony K. Cheetham,et al.  Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films , 1998 .

[106]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[107]  Pulickel M. Ajayan,et al.  Nanometre-size tubes of carbon , 1997 .

[108]  S. Herreyre,et al.  Study by mössbauer spectroscopy and magnetization measurement of the evolution of iron catalysts used in the disproportionation of CO , 1997 .

[109]  J. P. Zhang,et al.  Controlled production of aligned-nanotube bundles , 1997, Nature.

[110]  M. Yudasaka,et al.  Behavior of Ni in carbon nanotube nucleation , 1997 .

[111]  A. Govindaraj,et al.  Carbon nanotubes by the metallocene route , 1997 .

[112]  A. Maiti,et al.  KINETICS OF METAL-CATALYZED GROWTH OF SINGLE-WALLED CARBON NANOTUBES , 1997 .

[113]  J. Nørskov,et al.  Surface electronic structure and reactivity of transition and noble metals , 1997 .

[114]  J. Nagy,et al.  Catalytic synthesis of carbon nanotubes using zeolite support , 1996 .

[115]  A. Rinzler,et al.  SINGLE-WALL NANOTUBES PRODUCED BY METAL-CATALYZED DISPROPORTIONATION OF CARBON MONOXIDE , 1996 .

[116]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[117]  J. Nagy,et al.  Optimization of catalytic production and purification of buckytubes , 1996 .

[118]  M. Yudasaka,et al.  Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition , 1995 .

[119]  X. B. Zhang,et al.  The study of carbon nanotubules produced by catalytic method , 1994 .

[120]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[121]  M. Kim,et al.  The role of interfacial phenomena in the structure of carbon deposits , 1992 .

[122]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[123]  T. Ida,et al.  Characterization of iron oxide in Fe2O3 SiO2 catalyst , 1987 .

[124]  J. Geus,et al.  The formation of filamentous carbon on iron and nickel catalysts: III. Morphology , 1985 .

[125]  Gary G. Tibbetts,et al.  Why are carbon filaments tubular , 1984 .

[126]  J. Dumesic,et al.  Effect of the surface state of iron on filamentous carbon formation , 1982 .

[127]  A. Oberlin,et al.  Crystallographic orientations of catalytic particles in filamentous carbon; Case of simple conical particles , 1981 .

[128]  J. Rostrup-Nielsen Mechanisms of carbon formation on nickel-containing catalysts , 1977 .

[129]  Jeffrey Bokor,et al.  Monolithic Integration of Carbon Nanotube Devices with Silicon MOS Technology , 2004 .

[130]  J. Pinheiro,et al.  Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts: I. Growth versus catalyst state , 2003 .

[131]  A. Burger,et al.  Growth orientation of carbon nanotubes by thermal chemical vapor deposition , 2002 .

[132]  J. Charlier,et al.  Growth Mechanisms of Carbon Nanotubes , 2001 .

[133]  Q. Xin,et al.  In situ study of carbon nanotube formation by C2H2 decomposition on an iron-based catalyst , 2000 .

[134]  I. Kiricsi,et al.  Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol–gel silica–aluminas , 2000 .

[135]  Emmanuel Flahaut,et al.  Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes , 2000 .

[136]  J. Nagy,et al.  Synthesis of single-wall carbon nanotubes by catalytic decomposition of hydrocarbons , 1999 .

[137]  Zhengwei Pan,et al.  Direct growth of aligned open carbon nanotubes by chemical vapor deposition , 1999 .

[138]  Ping Chen,et al.  Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a NiMgO catalyst , 1997 .

[139]  R. M. Lambert,et al.  Chemisorption and reactivity on supported clusters and thin films : towards an understanding of microscopic processes in catalysis , 1997 .

[140]  D. P. Woodruff,et al.  Growth and properties of ultrathin epitaxial layers , 1997 .

[141]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[142]  J. Nagy,et al.  Fe-catalyzed carbon nanotube formation , 1996 .

[143]  R. Baker,et al.  Catalytic growth of carbon filaments , 1989 .

[144]  A. S. Chiang,et al.  The initiation and growth of filamentous carbon from α-iron in H2, CH4, H2O, CO2, and CO gas mixtures , 1984 .