Efficient Algorithm of Affine Form Searching forWeakly Specified Boolean Function

This paper presents the spectralmethod of recognition of an incompletely defined Boolean function. The main goal of analysis is fast estimation whether a given single output function can be extended to affine form. Furthermore, a simple extension algorithm is proposed for functions, for which the affine form is reachable. The algorithm is compared with other methods. Theoretical and experimental results demonstrate the efficiency of the presented approach.

[1]  Anne Canteaut,et al.  On cryptographic properties of the cosets of R(1, m) , 2001, IEEE Trans. Inf. Theory.

[2]  Radomir S. Stankovic,et al.  Spectral Transforms Calculation through Decision Diagrams , 2002, VLSI Design.

[3]  Radomir S. Stankovic,et al.  Reduction of Sizes of Decision Diagrams by Autocorrelation Functions , 2003, IEEE Trans. Computers.

[4]  Piotr Porwik,et al.  Some practical remarks about Binary Decision Diagram size reduction , 2006, IEICE Electron. Express.

[5]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[6]  Svetlana Yanushkevich,et al.  Logic differential calculus in multi-valued logic design , 1998 .

[7]  Stanley L. Hurst,et al.  Spectral techniques in digital logic , 1985 .

[8]  A. Mishchenko,et al.  Fast Heuristic Minimization of Exclusive-Sums-of-Products , 2001 .

[9]  Masahiro Fujita,et al.  Fast spectrum computation for logic functions using binary decision diagrams , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[10]  P. Porwik THE SPECTRAL TEST OF THE BOOLEAN FUNCTION LINEARITY , 2003 .

[11]  Jennifer Seberry,et al.  Construction of bent functions from two known bent functions , 1994, Australas. J Comb..

[12]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[13]  M. Karpovsky Finite Orthogonal Series in Design of Digital Devices , 2006 .

[14]  P. Porwik WALSH COEFFICIENTS DISTRIBUTION FOR SOME TYPES OF BOOLEAN FUNCTION , 2005 .

[15]  Bogdan J. Falkowski,et al.  Effective computer methods for the calculation of Rademacher-Walsh spectrum for completely and incompletely specified Boolean functions , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  Tsutomu Sasao,et al.  Representations of Logic Functions Using EXOR Operators , 1996 .

[17]  Piotr Porwik,et al.  EFFICIENT CALCULATION OF THE REED-MULLER FORM BY MEANS OF THE WALSH TRANSFORM , 2002 .

[18]  Harold S. Stone Review: M. G. Karpovsky, Finite orthogonal series in the design of digital devices , 1977 .

[19]  George K. Papakonstantinou,et al.  A fast and efficient heuristic ESOP minimization algorithm , 2004, GLSVLSI '04.

[20]  K. R. Rao,et al.  Orthogonal Transforms for Digital Signal Processing , 1979, IEEE Transactions on Systems, Man, and Cybernetics.