Disjunctive Cuts for Mixed Integer Nonlinear Programming Problems

We survey recent progress in applying disjunctive programming theory for the effective solution of mixed integer nonlinear programming problems. Generation of effective cutting planes is discussed for both the convex and nonconvex cases.

[1]  Alper Atamtürk,et al.  Conic mixed-integer rounding cuts , 2009, Math. Program..

[2]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[3]  Sven Leyffer,et al.  FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs , 2010, INFORMS J. Comput..

[4]  Egon Balas,et al.  Intersection Cuts - A New Type of Cutting Planes for Integer Programming , 1971, Oper. Res..

[5]  Egon Balas,et al.  Integer programming and convex analysis: Intersection cuts from outer polars , 1972, Math. Program..

[6]  Hanif D. Sherali,et al.  Disjunctive Programming , 2009, Encyclopedia of Optimization.

[7]  Jon Lee,et al.  Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations , 2010, Math. Program..

[8]  M. Jünger,et al.  50 Years of Integer Programming 1958-2008 - From the Early Years to the State-of-the-Art , 2010 .

[9]  Sanjay Mehrotra,et al.  A branch-and-cut method for 0-1 mixed convex programming , 1999, Math. Program..

[10]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[11]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[12]  Egon Balas,et al.  A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer gomory cuts for 0-1 programming , 2003, Math. Program..

[13]  Laurence A. Wolsey,et al.  Solving Mixed Integer Programming Problems Using Automatic Reformulation , 1987, Oper. Res..

[14]  Egon Balas,et al.  Gomory cuts revisited , 1996, Oper. Res. Lett..

[15]  Mehmet Tolga Çezik,et al.  Cuts for mixed 0-1 conic programming , 2005, Math. Program..

[16]  Jeff T. Linderoth,et al.  Algorithms and Software for Convex Mixed Integer Nonlinear Programs , 2012 .

[17]  Marcus Porembski Finitely convergent cutting planes for concave minimization , 2001, J. Glob. Optim..

[18]  S. Ulbrich,et al.  MIXED INTEGER SECOND ORDER CONE PROGRAMMING , 2008 .

[19]  G. Cornuéjols,et al.  Corner Polyhedron and Intersection Cuts , 2011 .

[20]  T. Kuno,et al.  A Disjunctive Cutting-Plane-Based Branch-and-Cut Algorithm for 0−1 Mixed-Integer Convex Nonlinear Programs , 2006 .

[21]  James R. Luedtke,et al.  Effective separation of disjunctive cuts for convex mixed integer nonlinear programs , 2010 .

[22]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[23]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[24]  Egon Balas,et al.  Lift-and-project for Mixed 0-1 programming: recent progress , 2002, Discret. Appl. Math..

[25]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[26]  Matteo Fischetti,et al.  On the separation of disjunctive cuts , 2011, Math. Program..

[27]  Laurence A. Wolsey,et al.  Valid Linear Inequalities for Fixed Charge Problems , 1985, Oper. Res..

[28]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[29]  Laurence A. Wolsey,et al.  A recursive procedure to generate all cuts for 0–1 mixed integer programs , 1990, Math. Program..

[30]  Jon Lee,et al.  Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations , 2011, Math. Program..

[31]  Egon Balas,et al.  Optimizing over the split closure , 2008, Math. Program..

[32]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[33]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[34]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[35]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[36]  Sanjeeb Dash,et al.  Computational Experiments with Cross and Crooked Cross Cuts , 2014, INFORMS J. Comput..

[37]  Pierre Bonami,et al.  Lift-and-Project Cuts for Mixed Integer Convex Programs , 2011, IPCO.

[38]  E. Balas,et al.  Facets of the Knapsack Polytope From Minimal Covers , 1978 .

[39]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1987, Math. Program..