2dFLenS and KiDS: determining source redshift distributions with cross-correlations
暂无分享,去创建一个
C. Heymans | M. Radovich | K. Kuijken | D. Parkinson | H. Hildebrandt | C. Wolf | C. Blake | K. Glazebrook | C. Lidman | T. Erben | J. Harnois-Déraps | J. McFarland | D. Klaes | F. Marin | C. Morrison | G. Poole | S. Joudaki | A. Amon | Andrew Johnson
[1] Ivan K. Baldry,et al. the-wizz: clustering redshift estimation for everyone , 2016, 1609.09085.
[2] P. Schneider,et al. KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.
[3] C. Heymans,et al. The 2-degree Field Lensing Survey: design and clustering measurements , 2016, 1608.02668.
[4] B. Garilli,et al. Clustering-based redshift estimation: application to VIPERS/CFHTLS , 2016, 1605.05501.
[5] A. Hopkins,et al. Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data , 2016, 1604.07233.
[6] J. Loveday,et al. The stellar-to-halo mass relation of GAMA galaxies from 100 deg2 of KiDS weak lensing data , 2016, 1601.06791.
[7] C. Heymans,et al. CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys , 2015, 1512.03626.
[8] H. Hoekstra,et al. A direct measurement of tomographic lensing power spectra from CFHTLenS , 2015, 1509.04071.
[9] B. M'enard,et al. Exploring the 2MASS extended and point source catalogues with clustering redshifts , 2015, 1508.03046.
[10] C. B. D'Andrea,et al. Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.
[11] Iftach Sadeh,et al. ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.
[12] A. Heavens,et al. Hierarchical cosmic shear power spectrum inference , 2015, 1505.07840.
[13] Massimo Brescia,et al. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 , 2015 .
[14] Massimo Brescia,et al. The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.
[15] Edwin Valentijn,et al. Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.
[16] H. Hoekstra,et al. The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00737.
[17] A. Hopkins,et al. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00735.
[18] University of Cambridge,et al. The VLT Survey Telescope ATLAS , 2015, 1502.05432.
[19] Christopher B. Morrison,et al. Clustering-based redshift estimation: comparison to spectroscopic redshifts , 2014, 1407.7860.
[20] A. Hopkins,et al. Inferring the redshift distribution of the cosmic infrared background , 2014, 1407.0031.
[21] Ludovic van Waerbeke,et al. Simulations of weak gravitational lensing – II. Including finite support effects in cosmic shear covariance matrices , 2014, 1406.0543.
[22] W. M. Wood-Vasey,et al. Spectroscopic Needs for Imaging Dark Energy Experiments , 2013, 1309.5384.
[23] R. Nichol,et al. Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.
[24] Hendrik Hildebrandt,et al. On the complementarity of galaxy clustering with cosmic shear and flux magnification , 2013, 1306.6870.
[25] Huan Lin,et al. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements , 2012, 1207.3347.
[26] C. Clarkson,et al. Optimising Gaussian processes for reconstructing dark energy dynamics from supernovae , 2013, 1311.6678.
[27] Farhan Feroz,et al. SKYNET: an efficient and robust neural network training tool for machine learning in astronomy , 2013, ArXiv.
[28] R. Smith,et al. Halo stochasticity from exclusion and nonlinear clustering , 2013, 1305.2917.
[29] Christopher B. Morrison,et al. On estimating cosmology-dependent covariance matrices , 2013, 1304.7789.
[30] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[31] T. Budavari,et al. Clustering-based redshift estimation: method and application to data , 2013, 1303.4722.
[32] Davis,et al. Recovering redshift distributions with cross-correlations: pushing the boundaries , 2013, 1303.0292.
[33] M. White,et al. On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.
[34] Yannick Mellier,et al. CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.
[35] H. Hoekstra,et al. Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.
[36] Hugh Merz,et al. High Performance P3M N-body code: CUBEP3M , 2012, 1208.5098.
[37] A. Connolly,et al. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.
[38] Adam G. Riess,et al. Observational probes of cosmic acceleration , 2012, 1201.2434.
[39] Takahiro Nishimichi,et al. REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.
[40] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[41] G. Bernstein,et al. Combining weak-lensing tomography and spectroscopic redshift surveys , 2011, 1112.4478.
[42] SLAC,et al. Sample variance in photometric redshift calibration: cosmological biases and survey requirements , 2011, 1109.5691.
[43] F. Castander,et al. Cross-correlation of spectroscopic and photometric galaxy surveys: cosmology from lensing and redshift distortions , 2011, 1109.4852.
[44] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[45] S. Bamford,et al. Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.
[46] Jeffrey A. Newman,et al. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE , 2010, 1003.0687.
[47] Andrew P. Hearin,et al. A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY , 2010, 1002.3383.
[48] A. Schulz. CALIBRATING PHOTOMETRIC REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS , 2009, 0910.3683.
[49] G. Bernstein,et al. Catastrophic photometric redshift errors: weak-lensing survey requirements , 2009, 0902.2782.
[50] P. Hudelot,et al. CARS: the CFHTLS-Archive-Research Survey. I. Five-band multi-colour data from 37 sq. deg. CFHTLS-wid , 2008, 0811.2239.
[51] Paolo Coppi,et al. EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.
[52] Jeffrey A. Newman,et al. Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.
[53] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.
[54] T. Kitching,et al. Systematic effects on dark energy from 3D weak shear , 2008, 0801.3270.
[55] Shirley Ho,et al. Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications , 2008, 0801.0642.
[56] R. Nichol,et al. The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.
[57] G. Bernstein,et al. Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2005, astro-ph/0506030.
[58] D. Huterer,et al. Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005, astro-ph/0506614.
[59] R. Wilson. Modern Cosmology , 2004 .
[60] J. Peacock,et al. Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.
[61] D. Huterer,et al. Weak lensing and dark energy , 2001, astro-ph/0106399.
[62] Wayne Hu,et al. � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .
[63] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[64] U. Toronto,et al. Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.
[65] Max Tegmark. How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.
[66] A. Szalay,et al. Bias and variance of angular correlation functions , 1993 .
[67] D. Nelson Limber,et al. The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .