2dFLenS and KiDS: determining source redshift distributions with cross-correlations

We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in theKilo-Degree imaging survey through crosscorrelation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techniques for inferring the redshift distribution.

[1]  Ivan K. Baldry,et al.  the-wizz: clustering redshift estimation for everyone , 2016, 1609.09085.

[2]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[3]  C. Heymans,et al.  The 2-degree Field Lensing Survey: design and clustering measurements , 2016, 1608.02668.

[4]  B. Garilli,et al.  Clustering-based redshift estimation: application to VIPERS/CFHTLS , 2016, 1605.05501.

[5]  A. Hopkins,et al.  Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data , 2016, 1604.07233.

[6]  J. Loveday,et al.  The stellar-to-halo mass relation of GAMA galaxies from 100 deg2 of KiDS weak lensing data , 2016, 1601.06791.

[7]  C. Heymans,et al.  CFHTLenS and RCSLenS: testing photometric redshift distributions using angular cross-correlations with spectroscopic galaxy surveys , 2015, 1512.03626.

[8]  H. Hoekstra,et al.  A direct measurement of tomographic lensing power spectra from CFHTLenS , 2015, 1509.04071.

[9]  B. M'enard,et al.  Exploring the 2MASS extended and point source catalogues with clustering redshifts , 2015, 1508.03046.

[10]  C. B. D'Andrea,et al.  Cosmology from cosmic shear with Dark Energy Survey science verification data , 2015, 1507.05552.

[11]  Iftach Sadeh,et al.  ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning , 2015, 1507.00490.

[12]  A. Heavens,et al.  Hierarchical cosmic shear power spectrum inference , 2015, 1505.07840.

[13]  Massimo Brescia,et al.  Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2 , 2015 .

[14]  Massimo Brescia,et al.  The first and second data releases of the Kilo-Degree Survey , 2015, 1507.00742.

[15]  Edwin Valentijn,et al.  Gravitational lensing analysis of the Kilo-Degree Survey , 2015, 1507.00738.

[16]  H. Hoekstra,et al.  The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00737.

[17]  A. Hopkins,et al.  Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data , 2015, 1507.00735.

[18]  University of Cambridge,et al.  The VLT Survey Telescope ATLAS , 2015, 1502.05432.

[19]  Christopher B. Morrison,et al.  Clustering-based redshift estimation: comparison to spectroscopic redshifts , 2014, 1407.7860.

[20]  A. Hopkins,et al.  Inferring the redshift distribution of the cosmic infrared background , 2014, 1407.0031.

[21]  Ludovic van Waerbeke,et al.  Simulations of weak gravitational lensing – II. Including finite support effects in cosmic shear covariance matrices , 2014, 1406.0543.

[22]  W. M. Wood-Vasey,et al.  Spectroscopic Needs for Imaging Dark Energy Experiments , 2013, 1309.5384.

[23]  R. Nichol,et al.  Photometric redshift analysis in the Dark Energy Survey Science Verification data , 2014, 1406.4407.

[24]  Hendrik Hildebrandt,et al.  On the complementarity of galaxy clustering with cosmic shear and flux magnification , 2013, 1306.6870.

[25]  Huan Lin,et al.  Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements , 2012, 1207.3347.

[26]  C. Clarkson,et al.  Optimising Gaussian processes for reconstructing dark energy dynamics from supernovae , 2013, 1311.6678.

[27]  Farhan Feroz,et al.  SKYNET: an efficient and robust neural network training tool for machine learning in astronomy , 2013, ArXiv.

[28]  R. Smith,et al.  Halo stochasticity from exclusion and nonlinear clustering , 2013, 1305.2917.

[29]  Christopher B. Morrison,et al.  On estimating cosmology-dependent covariance matrices , 2013, 1304.7789.

[30]  R. J. Brunner,et al.  TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.

[31]  T. Budavari,et al.  Clustering-based redshift estimation: method and application to data , 2013, 1303.4722.

[32]  Davis,et al.  Recovering redshift distributions with cross-correlations: pushing the boundaries , 2013, 1303.0292.

[33]  M. White,et al.  On using angular cross-correlations to determine source redshift distributions , 2013, 1302.0857.

[34]  Yannick Mellier,et al.  CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions , 2012, 1212.3327.

[35]  H. Hoekstra,et al.  Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey , 2012, 1210.8201.

[36]  Hugh Merz,et al.  High Performance P3M N-body code: CUBEP3M , 2012, 1208.5098.

[37]  A. Connolly,et al.  THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.

[38]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[39]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[40]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[41]  G. Bernstein,et al.  Combining weak-lensing tomography and spectroscopic redshift surveys , 2011, 1112.4478.

[42]  SLAC,et al.  Sample variance in photometric redshift calibration: cosmological biases and survey requirements , 2011, 1109.5691.

[43]  F. Castander,et al.  Cross-correlation of spectroscopic and photometric galaxy surveys: cosmology from lensing and redshift distortions , 2011, 1109.4852.

[44]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[45]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[46]  Jeffrey A. Newman,et al.  RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE , 2010, 1003.0687.

[47]  Andrew P. Hearin,et al.  A GENERAL STUDY OF THE INFLUENCE OF CATASTROPHIC PHOTOMETRIC REDSHIFT ERRORS ON COSMOLOGY WITH COSMIC SHEAR TOMOGRAPHY , 2010, 1002.3383.

[48]  A. Schulz CALIBRATING PHOTOMETRIC REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS , 2009, 0910.3683.

[49]  G. Bernstein,et al.  Catastrophic photometric redshift errors: weak-lensing survey requirements , 2009, 0902.2782.

[50]  P. Hudelot,et al.  CARS: the CFHTLS-Archive-Research Survey. I. Five-band multi-colour data from 37 sq. deg. CFHTLS-wid , 2008, 0811.2239.

[51]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[52]  Jeffrey A. Newman,et al.  Calibrating Redshift Distributions beyond Spectroscopic Limits with Cross-Correlations , 2008, 0805.1409.

[53]  Huan Lin,et al.  Estimating the redshift distribution of photometric galaxy samples – II. Applications and tests of a new method , 2008, 0801.3822.

[54]  T. Kitching,et al.  Systematic effects on dark energy from 3D weak shear , 2008, 0801.3270.

[55]  Shirley Ho,et al.  Correlation of CMB with large-scale structure. I. Integrated Sachs-Wolfe tomography and cosmological implications , 2008, 0801.0642.

[56]  R. Nichol,et al.  The clustering of luminous red galaxies in the Sloan Digital Sky Survey imaging data , 2006, astro-ph/0605302.

[57]  G. Bernstein,et al.  Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2005, astro-ph/0506030.

[58]  D. Huterer,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005, astro-ph/0506614.

[59]  R. Wilson Modern Cosmology , 2004 .

[60]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[61]  D. Huterer,et al.  Weak lensing and dark energy , 2001, astro-ph/0106399.

[62]  Wayne Hu,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. POWER SPECTRUM TOMOGRAPHY WITH WEAK LENSING , 1999 .

[63]  N. Benı́tez Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.

[64]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[65]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[66]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[67]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .