Computing Final Polynomials and Final Syzygies Using Buchberger’s Gröbner Bases Method

Final polynomials and final syzygies provide an explicit representation of polynomial identities promised by Hilbert’s Nullstellensatz. Such representations have been studied independently by Bokowski [2,3,4] and Whiteley [23,24] to derive invariant algebraic proofs for statements in geometry.In the present paper we relate these methods to some recent developments in computational algebraic geometry. As the main new result we give an algorithm based on B. Buchberger’s Gröbner bases method for computing final polynomials and final syzygies over the complex numbers. Degree upper bound for final polynomials are derived from theorems of Lazard and Brownawell, and a topological criterion is proved for the existence of final syzygies. The second part of this paper is expository and discusses applications of our algorithm to real projective geometry, invariant theory and matrix theory.

[1]  N. Bose Multidimensional Systems Theory , 1985 .

[2]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[3]  D. Mumford The red book of varieties and schemes , 1988 .

[4]  Deepak Kapur,et al.  Using Gröbner Bases to Reason About Geometry Problems , 1986, J. Symb. Comput..

[5]  E. Becker On the real spectrum of a ring and its application to semialgebraic geometry , 1986 .

[6]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[7]  Carlos Augusto Di Prisco Methods in Mathematical Logic , 1985 .

[8]  Bruno Buchberger,et al.  Applications of Gro¨bner bases in non-linear computational geometry , 1988 .

[9]  H. Weyl The Classical Groups , 1939 .

[10]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[11]  B. Sturmfels Computational Synthetic Geometry , 1989 .

[12]  Neil L. White,et al.  Cayley Factorization , 1988, ISSAC.

[13]  Charles R. Johnson Some outstanding problems in the theory of matrices , 1982 .

[14]  David Shannon,et al.  Using Gröbner Bases to Determine Algebra Membership Split Surjective Algebra Homomorphisms Determine Birational Equivalence , 1988, J. Symb. Comput..

[15]  Bernd Sturmfels,et al.  Symbolic Computations in Geometry , 1988 .

[16]  L. M. Kelly,et al.  Affine Embeddings of Sylverter-Gallai Designs , 1973, J. Comb. Theory, Ser. A.

[17]  M. A. Dickmann,et al.  Applications of model theory to real algebraic geometry , 1985 .

[18]  J. Dieudonne,et al.  Invariant theory, old and new , 1971 .

[19]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[20]  Jürgen Bokowski,et al.  Altshuler's Sphere M10425 is not Polytopal , 1987, Eur. J. Comb..

[21]  Bernd Sturmfels,et al.  Polytopal and nonpolytopal spheres an algorithmic approach , 1987 .

[22]  D. Lazard Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .

[23]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .