Lessons learned after three years of SPIDER operation and the first MITICA integrated tests

P. Sonato | C. Wimmer | F. Albajar | R. Zagórski | E. Gaio | A. Luchetta | G. Manduchi | A. Masiello | M. Vignando | K. Tsumori | F. Paolucci | D. Aprile | G. Chitarin | V. Toigo | N. Pomaro | M. Brombin | R. Cavazzana | M. Zuin | D. López-Bruna | A. La Rosa | K. Watanabe | F. Veronese | M. Tardocchi | F. Fellin | M. Valisa | M. Spolaore | A. Canton | G. Serianni | R. Pasqualotto | R. Lorenzini | F. Gnesotto | L. Grando | D. Marcuzzi | S. Peruzzo | E. Spada | S. Spagnolo | C. Taliercio | P. Zaccaria | B. Zaniol | L. Zanotto | P. Agostinetti | M. Barbisan | M. Battistella | M. Boldrin | S. Deambrosis | R. Delogu | A. Maistrello | E. Miorin | M. Pavei | N. Pilan | M. Recchia | A. Rizzolo | E. Sartori | M. Valente | F. Taccogna | L. Giacomelli | A. Muraro | G. Croci | H. Decamps | M. Rebai | D. Rigamonti | A. Shepherd | J. Zacks | M. Dan | G. Berton | L. Cordaro | A. Pimazzoni | R. Agnello | M. Cavenago | S. Denizeau | T. Patton | M. Kashiwagi | H. Tobari | U. Fantz | N. Marconato | D. Boilson | R. Milazzo | P. Jain | F. Montagner | C. Poggi | M. Fadone | B. Segalini | C. Rotti | L. Trevisan | M. Zaupa | P. Tinti | S. Dal Bello | M. Dalla Palma | M. De Muri | S. Manfrin | M. Siragusa | M. Ugoletti | F. Geli | A. Garbuglia | M. Simon | E. Bragulat | G. Gomez | D. Gutierrez | C. Labate | G. Kouzmenko | H. Dhola | M. Agostini | A. Ferro | A. Sottocornola | P. Veltri | G. Mico | T. Maejima | A. Kojima | N. Singh | A. Tonti | F. Panin | D. Wünderlich | I. Mario | P. Readman | M. Bigi | R. Casagrande | E. Oshita | D. Rizzetto | M. Murayama | Y. Yamashita | V. Candeloro | G. Martini | V. Candela | G. Gorini | M. Rutigliano | C. Cavallini | A. de Lorenzi | B. Pouradier-Duteil | A. Rigoni-Garola | D. Bruno | M. De Nardi | N. Cruz | P. Tomšič | M.J. Singh | F. Santoro | L. Bailly-Maître | C. Gasparrini | A. Sharma | S. Hatakeyama | N. Shibata | B. Heinemann | S. Longo | A. La Rosa

[1]  A. Masiello,et al.  The beam source of the MITICA experiment: Strategy adopted, manufacturing design, engineering and fabrication of the main components , 2023, Fusion Engineering and Design.

[2]  G. Serianni,et al.  Integration of new sets of magnets for improved plasma confinement in the SPIDER experiment , 2023, Fusion Engineering and Design.

[3]  A. Luchetta,et al.  As built design of the control systems of the ITER full-size beam source SPIDER in the neutral beam test facility - A critical review , 2023, Fusion Engineering and Design.

[4]  L. Trevisan,et al.  CODAS for long lasting experiments. The SPIDER experience , 2023, Fusion Engineering and Design.

[5]  V. Toigo,et al.  Modelling activity in support of MITICA high voltage system protections , 2023, Fusion Engineering and Design.

[6]  A. Luchetta,et al.  As built design, commissioning and integration of the SPIDER and NBTF central safety systems , 2023, Fusion Engineering and Design.

[7]  B. Pouradier Duteil,et al.  First characterization of the SPIDER beam AC component with the Beamlet Current Monitor , 2023, Fusion Engineering and Design.

[8]  E. Gaio,et al.  Overview on electrical issues faced during the SPIDER experimental campaigns , 2023, Fusion Engineering and Design.

[9]  M. Ugoletti,et al.  Development of the tomographic reconstruction technique of SPIDER negative ion beam , 2023, Fusion Engineering and Design.

[10]  R. Zagórski,et al.  2D simulations of inductive RF heating in the drivers of the SPIDER device , 2023, Fusion Engineering and Design.

[11]  V. Toigo,et al.  Partial discharges detection in 1 MV power supplies in MITICA experiment, the ITER heating neutral beam injector prototype , 2023, Fusion Engineering and Design.

[12]  G. Chitarin,et al.  A strategy to identify breakdown location in MITICA test facility: results of high voltage test campaign , 2023, Fusion Engineering and Design.

[13]  G. Serianni,et al.  Measurement of stripping losses in the negative ion source SPIDER , 2023, Fusion Engineering and Design.

[14]  G. Serianni,et al.  Influence of plasma grid-masking on the results of early SPIDER operation , 2023, Fusion Engineering and Design.

[15]  A. Luchetta,et al.  Functional safety assessment process for MITICA safety system in the ITER neutral beam test facility , 2023, Fusion Engineering and Design.

[16]  D. Aprile,et al.  Electrical diagnostics for high voltage tests in MITICA , 2023, Fusion Engineering and Design.

[17]  L. Baldini,et al.  Characterization of cesium and H-/D- density in the negative ion source SPIDER , 2022, 2211.04901.

[18]  R. Zagórski,et al.  First operations with caesium of the negative ion source SPIDER , 2022, Nuclear Fusion.

[19]  A. Maistrello,et al.  Power supply system for large negative ion sources: Early operation experience on the SPIDER experiment , 2021 .

[20]  G. Serianni,et al.  First results from beam emission spectroscopy in SPIDER negative ion source , 2021, Plasma Physics and Controlled Fusion.

[21]  C. Wimmer,et al.  Negative Hydrogen Ion Sources for Fusion: From Plasma Generation to Beam Properties , 2021, Frontiers in Physics.

[22]  V. Toigo,et al.  On the road to ITER NBIs: SPIDER improvement after first operation and MITICA construction progress , 2021, Fusion Engineering and Design.

[23]  G. Serianni,et al.  SPIDER Cs Ovens functional tests , 2021 .

[24]  P. Sonato,et al.  Robustness of ZAO based NEG pump solutions for fusion applications , 2021 .

[25]  B. Heinemann,et al.  NNBI for ITER: status of long pulses in deuterium at the test facilities BATMAN Upgrade and ELISE , 2021, Nuclear Fusion.

[26]  M. Brombin,et al.  Assessment of the SPIDER beam features by diagnostic calorimetry and thermography. , 2020, The Review of scientific instruments.

[27]  G. Marchiori,et al.  Characterization of the SPIDER Cs oven prototype in the CAesium Test Stand for the ITER HNB negative ion sources , 2019, Fusion Engineering and Design.

[28]  E. Gaio,et al.  Investigation on stable operational regions for SPIDER RF oscillators , 2019, Fusion Engineering and Design.

[29]  P. Sonato,et al.  Characterization of ZAO® sintered getter material for use in fusion applications , 2019, Fusion Engineering and Design.

[30]  B. Schunke,et al.  R&D status of the Indian test facility for ITER diagnostic neutral beam characterization , 2019, Nuclear Fusion.

[31]  V. Toigo,et al.  The PRIMA Test Facility: SPIDER and MITICA test-beds for ITER neutral beam injectors , 2017 .

[32]  B. Heinemann,et al.  Solid state generator for powerful radio frequency ion sources in neutral beam injection systems , 2015 .

[33]  R. S. Hemsworth,et al.  Recent improvements to the ITER neutral beam system design , 2012 .

[34]  A. Chakraborty,et al.  RF-Plasma Source Commissioning in Indian Negative Ion Facility , 2011 .

[35]  M. Bigi,et al.  Electrical and thermal analyses for the radio-frequency circuit of ITER NBI ion source , 2009 .

[36]  V. Toigo,et al.  Assessment of performance of the acceleration grid power supply of the ITER neutral beam injector , 2009 .