Optimal Rectangle Packing: An Absolute Placement Approach

We consider the problem of finding all enclosing rectangles of minimum area that can contain a given set of rectangles without overlap. Our rectangle packer chooses the x-coordinates of all the rectangles before any of the y-coordinates. We then transform the problem into a perfect-packing problem with no empty space by adding additional rectangles. To determine the y-coordinates, we branch on the different rectangles that can be placed in each empty position. Our packer allows us to extend the known solutions for a consecutive-square benchmark from 27 to 32 squares. We also introduce three new benchmarks, avoiding properties that make a benchmark easy, such as rectangles with shared dimensions. Our third benchmark consists of rectangles of increasingly high precision. To pack them efficiently, we limit the rectangles' coordinates and the bounding box dimensions to the set of subset sums of the rectangles' dimensions. Overall, our algorithms represent the current state-of-the-art for this problem, outperforming other algorithms by orders of magnitude, depending on the benchmark.

[1]  Richard E. Korf,et al.  Optimal Packing of High-Precision Rectangles , 2011, SOCS.

[2]  Mats Carlsson,et al.  New filtering for the cumulative constraint in the context of non-overlapping rectangles , 2008, Ann. Oper. Res..

[3]  Paul E. Sweeney,et al.  Cutting and Packing Problems: A Categorized, Application-Orientated Research Bibliography , 1992 .

[4]  Richard E. Korf,et al.  Optimal Rectangle Packing: Initial Results , 2003, ICAPS.

[5]  Richard E. Korf,et al.  New Improvements in Optimal Rectangle Packing , 2009, IJCAI.

[6]  K. Dowsland An exact algorithm for the pallet loading problem , 1987 .

[7]  Igor L. Markov,et al.  Practical slicing and non-slicing block-packing without simulated annealing , 2004, GLSVLSI '04.

[8]  Richard E. Korf,et al.  Optimal Rectangle Packing on Non-Square Benchmarks , 2010, AAAI.

[9]  Mats Carlsson,et al.  Sweep as a Generic Pruning Technique Applied to the Non-overlapping Rectangles Constraint , 2001, CP.

[10]  Bernard Chazelle,et al.  The Bottomn-Left Bin-Packing Heuristic: An Efficient Implementation , 1983, IEEE Transactions on Computers.

[11]  S. Martello,et al.  Exact Solution of the Two-Dimensional Finite Bon Packing Problem , 1998 .

[12]  L. Moser,et al.  On packing of squares and cubes , 1968 .

[13]  Martha E. Pollack,et al.  Optimal Rectangle Packing: A Meta-CSP Approach , 2006, ICAPS.

[14]  Daniele Vigo,et al.  Recent advances on two-dimensional bin packing problems , 2002, Discret. Appl. Math..

[15]  Joseph Mitola,et al.  Cognitive radio: making software radios more personal , 1999, IEEE Wirel. Commun..

[16]  William B. Dowsland On a Research Bibliography for Cutting and Packing Problems , 1992 .

[17]  Barry O'Sullivan,et al.  Almost Square Packing , 2011, CPAIOR.

[18]  Jacques Carlier,et al.  A new exact method for the two-dimensional orthogonal packing problem , 2007, Eur. J. Oper. Res..

[19]  Barry O'Sullivan,et al.  Search Strategies for Rectangle Packing , 2008, CP.

[20]  Rina Dechter,et al.  Temporal Constraint Networks , 1989, Artif. Intell..

[21]  Richard E. Korf Optimal Rectangle Packing: New Results , 2004, ICAPS.

[22]  Shuai Cheng Li,et al.  New Approximation Algorithms for Some Dynamic Storage Allocation Problems , 2004, COCOON.

[23]  Roland H. C. Yap Book review: Constraint Processing by Rina Dechter, Morgan Kaufmann Publishers, 2003, ISBN 1-55860-890-7 , 2004, Theory Pract. Log. Program..

[24]  Richard E. Korf,et al.  Optimal rectangle packing , 2010, Ann. Oper. Res..

[25]  Subir Bhattacharya,et al.  An exact depth-first algorithm for the pallet loading problem , 1998, Eur. J. Oper. Res..

[26]  Joe Marks,et al.  Exhaustive approaches to 2D rectangular perfect packings , 2004, Inf. Process. Lett..

[27]  Nicolas Beldiceanu,et al.  Extending CHIP in order to solve complex scheduling and placement problems , 1993, JFPL.

[28]  Hidetoshi Onodera,et al.  Branch-and-bound placement for building block layout , 1991, 28th ACM/IEEE Design Automation Conference.

[29]  Andrea Lodi,et al.  Two-dimensional packing problems: A survey , 2002, Eur. J. Oper. Res..

[30]  V J Rayward-Smith Project Scheduling: Recent Models, Algorithms and Applications , 2001, J. Oper. Res. Soc..

[31]  Mats Carlsson,et al.  A Generic Geometrical Constraint Kernel in Space and Time for Handling Polymorphic k-Dimensional Objects , 2007, CP.