Augmented input estimation in multiple maneuvering target tracking

This paper presents augmented input estimation (AIE) for multiple maneuvering target tracking. Multi-target tracking (MTT) is based on two main parts, data association and estimation. In data association (DA), the best observations are assigned to the considered tracks. In real conditions, the number of observations is more than targets and also locations of observations are often so scattered that the association between targets and observations cannot be done simply. In this case, for general MTT problems with unknown numbers of targets, we present a Markov chain MonteCarlo DA (MCMCDA) algorithm that approximates the optimal Bayesian filter with low complexity in computations. After DA, estimation and tracking should be done. Since in general cases, many targets can have maneuvering motions, then AIE is proposed to cover both the non-maneuvering and maneuvering parts of motion and the maneuver detection procedure is eliminated. This model with an input estimation (IE) approach is a special augmentation in the state space model which considers both the state vector and the unknown input vector as a new augmented state vector. Some comparisons based on the Monte-Carlo simulations are also made to evaluate the performances of the proposed method and other older methods in MTT.