NMR structure and dynamics of a designed water-soluble transmembrane domain of nicotinic acetylcholine receptor.

[1]  Pierre-Jean Corringer,et al.  3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels , 2011, Neuropharmacology.

[2]  J. Changeux,et al.  X-ray structures of general anaesthetics bound to a pentameric ligand-gated ion channel , 2011, Nature.

[3]  V. Bondarenko,et al.  NMR structure of the transmembrane domain of the n-acetylcholine receptor beta2 subunit. , 2010, Biochimica et biophysica acta.

[4]  E. Haddadian,et al.  Unresponsive correlated motion in alpha7 nAChR to halothane binding explains its functional insensitivity to volatile anesthetics. , 2010, The journal of physical chemistry. B.

[5]  Yan Xu,et al.  Anesthetic effects on the structure and dynamics of the second transmembrane domains of nAChR alpha4beta2. , 2010, Biochimica et biophysica acta.

[6]  E. Haddadian,et al.  Higher susceptibility to halothane modulation in open- than in closed-channel alpha4beta2 nAChR revealed by molecular dynamics simulations. , 2010, The journal of physical chemistry. B.

[7]  R. Eckenhoff,et al.  Azi-isoflurane, a Photolabel Analog of the Commonly Used Inhaled General Anesthetic Isoflurane , 2009, ACS chemical neuroscience.

[8]  A. Steinacker,et al.  A Spice Study of Silicon Sensor Strip Noise on Long Ladders , 2011 .

[9]  Yan Xu,et al.  General Anesthetic Binding to α4β2 nAChR and Its Effects on Global Dynamics , 2009 .

[10]  Yan Xu,et al.  General anesthetic binding to neuronal alpha4beta2 nicotinic acetylcholine receptor and its effects on global dynamics. , 2009, The journal of physical chemistry. B.

[11]  R. Dutzler,et al.  Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel , 2009, Nature.

[12]  J. Changeux,et al.  X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation , 2009, Nature.

[13]  Pei Tang,et al.  NMR studies of a channel protein without membranes: Structure and dynamics of water-solubilized KcsA , 2008, Proceedings of the National Academy of Sciences.

[14]  M. Klein,et al.  Embedded cholesterol in the nicotinic acetylcholine receptor , 2008, Proceedings of the National Academy of Sciences.

[15]  Yan Xu,et al.  Residual dipolar coupling measurements of transmembrane proteins using aligned low-q bicelles and high-resolution magic angle spinning NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[16]  R. Dutzler,et al.  X-ray structure of a prokaryotic pentameric ligand-gated ion channel , 2008, Nature.

[17]  Hong Cheng,et al.  De novo design of a single-chain diphenylporphyrin metalloprotein. , 2007, Journal of the American Chemical Society.

[18]  Pei Tang,et al.  Dynamics of heteropentameric nicotinic acetylcholine receptor: Implications of the gating mechanism , 2007, Proteins.

[19]  J. Stroud,et al.  Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution. , 2007, Nature neuroscience.

[20]  One-Sun Lee,et al.  Molecular Dynamics Simulation of WSK-3, a Computationally Designed, Water-Soluble Variant of the Integral Membrane Protein KcsA. , 2006, Biophysical journal.

[21]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[22]  Yan Xu,et al.  Structure and dynamics of the second and third transmembrane domains of human glycine receptor. , 2005, Biochemistry.

[23]  Vikas Nanda,et al.  De novo design of a redox-active minimal rubredoxin mimic. , 2005, Journal of the American Chemical Society.

[24]  N. Unwin,et al.  Refined structure of the nicotinic acetylcholine receptor at 4A resolution. , 2005, Journal of molecular biology.

[25]  W. DeGrado,et al.  Computational de novo design and characterization of a four-helix bundle protein that selectively binds a nonbiological cofactor. , 2005, Journal of the American Chemical Society.

[26]  Jeffery G. Saven,et al.  Computational design of water-soluble analogues of the potassium channel KcsA , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Hidetoshi Kono,et al.  Computational design and characterization of a monomeric helical dinuclear metalloprotein. , 2003, Journal of molecular biology.

[28]  R. Eckenhoff,et al.  Identification of nicotinic acetylcholine receptor amino acids photolabeled by the volatile anesthetic halothane. , 2003, Biochemistry.

[29]  J. Lindstrom Nicotinic Acetylcholine Receptors of Muscles and Nerves , 2003 .

[30]  Y. Fujiyoshi,et al.  Structure and gating mechanism of the acetylcholine receptor pore , 2003, Nature.

[31]  J. Lindstrom Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology. , 2003, Annals of the New York Academy of Sciences.

[32]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[33]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[34]  L. Kay,et al.  Slow dynamics in folded and unfolded states of an SH3 domain. , 2001, Journal of the American Chemical Society.

[35]  F. Sigworth,et al.  Functional Reconstitution and Characterization of Recombinant Human α1-Glycine Receptors* , 2001, The Journal of Biological Chemistry.

[36]  T. Sixma,et al.  Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors , 2001, Nature.

[37]  J G Saven,et al.  Statistical theory for protein combinatorial libraries. Packing interactions, backbone flexibility, and the sequence variability of a main-chain structure. , 2001, Journal of molecular biology.

[38]  F. Sigworth,et al.  Functional reconstitution and characterization of recombinant human alpha 1-glycine receptors. , 2001, The Journal of biological chemistry.

[39]  L. Firestone,et al.  NMR study of volatile anesthetic binding to nicotinic acetylcholine receptors. , 2000, Biophysical journal.

[40]  A. Sali,et al.  Modeling of loops in protein structures , 2000, Protein science : a publication of the Protein Society.

[41]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[42]  A. Palmer,et al.  A Relaxation-Compensated Carr−Purcell−Meiboom−Gill Sequence for Characterizing Chemical Exchange by NMR Spectroscopy , 1999 .

[43]  C. Turro,et al.  Energy Transfer from Nucleic Acids to Tb(III): Selective Emission Enhancement by Single DNA Mismatches , 1999 .

[44]  J. Rullmann,et al.  Quality assessment of NMR structures: a statistical survey. , 1998, Journal of molecular biology.

[45]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[46]  Werner Braun,et al.  Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules , 1998, J. Comput. Chem..

[47]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[48]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[49]  N. J. Baxter,et al.  Temperature dependence of 1H chemical shifts in proteins , 1997, Journal of biomolecular NMR.

[50]  D. Cowburn,et al.  The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration. , 1997, Journal of molecular biology.

[51]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[52]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[53]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[54]  D. Naumann,et al.  The transmembrane domains of the nicotinic acetylcholine receptor contain alpha‐helical and beta structures. , 1994, The EMBO journal.

[55]  D. Hochstrasser,et al.  The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences , 1993, Electrophoresis.

[56]  Paul C. Driscoll,et al.  Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins , 1990 .

[57]  R. Hilderbrandt,et al.  Molecular structure of 2,5-dihydrofuran as determined by gas-phase electron diffraction , 1984 .

[58]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .