Enhancement of proton conductance by mutations of the selectivity filter of aquaporin-1.

[1]  Jessica M J Swanson,et al.  Proton solvation and transport in aqueous and biomolecular systems: insights from computer simulations. , 2007, The journal of physical chemistry. B.

[2]  G. Ning,et al.  Aquaporin-1 water channel expression in human kidney. , 1997, Journal of the American Society of Nephrology : JASN.

[3]  G. Voth,et al.  Redox-coupled proton pumping in cytochrome c oxidase: further insights from computer simulation. , 2008, Biochimica et biophysica acta.

[4]  B. Wallace,et al.  The pore dimensions of gramicidin A. , 1993, Biophysical journal.

[5]  I. Todorov,et al.  The DL_POLY molecular dynamics package , 2005 .

[6]  He-feng Huang,et al.  Expression of aquaporin‐1 in normal, hyperplasic, and carcinomatous endometria , 2008, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics.

[7]  B. Roux,et al.  Structure, energetics, and dynamics of lipid–protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer , 1996, Proteins.

[8]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[9]  G. Voth,et al.  Charge delocalization in proton channels, II: the synthetic LS2 channel and proton selectivity. , 2007, Biophysical journal.

[10]  M. Duszenko,et al.  Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei , 2006, Molecular microbiology.

[11]  F. Magni,et al.  AQP1 expression analysis in human diseases: implications for proteomic characterization , 2008, Expert review of proteomics.

[12]  E. Tajkhorshid,et al.  Molecular basis of proton blockage in aquaporins. , 2004, Structure.

[13]  M. Borgnia,et al.  Cellular and molecular biology of the aquaporin water channels. , 1999, Annual review of biochemistry.

[14]  M. Jensen,et al.  Hydroxide and proton migration in aquaporins. , 2005, Biophysical journal.

[15]  D. Levitt General continuum theory for multiion channel. I. Theory. , 1991, Biophysical journal.

[16]  A. Warshel,et al.  What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. , 2003, Biophysical journal.

[17]  A. Warshel,et al.  On the origin of the electrostatic barrier for proton transport in aquaporin , 2004, FEBS letters.

[18]  G. Voth,et al.  A computer simulation study of the hydrated proton in a synthetic proton channel. , 2003, Biophysical journal.

[19]  Gregory A Voth,et al.  Computer simulation of proton solvation and transport in aqueous and biomolecular systems. , 2006, Accounts of chemical research.

[20]  S. Sasaki,et al.  Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. , 2004, Journal of pharmacological sciences.

[21]  P. M. Rodger,et al.  DL_POLY: Application to molecular simulation , 2002 .

[22]  Peter Agre,et al.  Aquaporin water channels: molecular mechanisms for human diseases1 , 2003, FEBS letters.

[23]  K. Schulten,et al.  The mechanism of proton exclusion in aquaporin channels , 2004, Proteins.

[24]  Helmut Grubmüller,et al.  The dynamics and energetics of water permeation and proton exclusion in aquaporins. , 2005, Current opinion in structural biology.

[25]  Gregory A Voth,et al.  Computer simulation of explicit proton translocation in cytochrome c oxidase: the D-pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Benoît Roux,et al.  Ion transport in a gramicidin-like channel: dynamics and mobility , 1991 .

[27]  Gregory A. Voth,et al.  Multistate Empirical Valence Bond Model for Proton Transport in Water , 1998 .

[28]  G. Voth,et al.  Storage of an excess proton in the hydrogen-bonded network of the d-pathway of cytochrome C oxidase: identification of a protonated water cluster. , 2007, Journal of the American Chemical Society.

[29]  Thomas P. Jahn,et al.  NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes , 2005, Pflügers Archiv.

[30]  G. Voth,et al.  Free energy profiles for H+ conduction in the D-pathway of Cytochrome c Oxidase: a study of the wild type and N98D mutant enzymes. , 2006, Biochimica et biophysica acta.

[31]  K. Schulten,et al.  Theory and simulation of water permeation in aquaporin-1. , 2004, Biophysical journal.

[32]  J. Valleau,et al.  A Monte Carlo method for obtaining the interionic potential of mean force in ionic solution , 1975 .

[33]  Peter Agre,et al.  From structure to disease: the evolving tale of aquaporin biology , 2004, Nature Reviews Molecular Cell Biology.

[34]  Willy Wriggers,et al.  Spanning the length scales of biomolecular simulation. , 2004, Structure.

[35]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[36]  D. Levitt Interpretation of biological ion channel flux data--reaction-rate versus continuum theory. , 1986, Annual review of biophysics and biophysical chemistry.

[37]  D. Raldúa,et al.  Differential localization and regulation of two aquaporin-1 homologs in the intestinal epithelia of the marine teleost Sparus aurata. , 2008, American journal of physiology. Regulatory, integrative and comparative physiology.

[38]  Ilian T. Todorov,et al.  A short description of DL_POLY , 2006 .

[39]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[40]  Neil A Castle,et al.  Aquaporins as targets for drug discovery. , 2005, Drug discovery today.

[41]  Klaus Schulten,et al.  Charge delocalization in proton channels, I: the aquaporin channels and proton blockage. , 2007, Biophysical journal.

[42]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[43]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[44]  K. Schulten,et al.  Control of the Selectivity of the Aquaporin Water Channel Family by Global Orientational Tuning , 2002, Science.

[45]  G. Voth,et al.  Origins of proton transport behavior from selectivity domain mutations of the aquaporin-1 channel. , 2006, Biophysical journal.

[46]  B. Roux,et al.  Ion permeation through a narrow channel: using gramicidin to ascertain all-atom molecular dynamics potential of mean force methodology and biomolecular force fields. , 2006, Biophysical journal.

[47]  Rebecca A Robbins,et al.  Crystal structure of human aquaporin 4 at 1.8 Å and its mechanism of conductance , 2009, Proceedings of the National Academy of Sciences.

[48]  Arieh Warshel,et al.  The barrier for proton transport in aquaporins as a challenge for electrostatic models: The role of protein relaxation in mutational calculations , 2006, Proteins.

[49]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[50]  Binghua Wu,et al.  Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Voth,et al.  Molecular dynamics simulation of proton transport through the influenza A virus M2 channel. , 2002, Biophysical journal.

[52]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[53]  Gerhard Hummer,et al.  Position-dependent diffusion coefficients and free energies from Bayesian analysis of equilibrium and replica molecular dynamics simulations , 2005 .

[54]  Ronald M. Welch,et al.  Climatic Impact of Tropical Lowland Deforestation on Nearby Montane Cloud Forests , 2001, Science.

[55]  Gregory A. Voth,et al.  A second generation multistate empirical valence bond model for proton transport in aqueous systems , 2002 .

[56]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[57]  Gregory A Voth,et al.  Proton transport behavior through the influenza A M2 channel: insights from molecular simulation. , 2007, Biophysical journal.

[58]  Gregory A. Voth,et al.  The computer simulation of proton transport in water , 1999 .

[59]  K. Schulten,et al.  Electrostatic tuning of permeation and selectivity in aquaporin water channels. , 2003, Biophysical journal.

[60]  A. Verkman More than just water channels: unexpected cellular roles of aquaporins , 2005, Journal of Cell Science.

[61]  S. Hisamatsu,et al.  Aquaporin 1 expression in tissues of canines possessing inherited high K+ erythrocytes , 2008, Journal of veterinary science.

[62]  B. Roux,et al.  Energetics of ion conduction through the gramicidin channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[63]  B. L. de Groot,et al.  The mechanism of proton exclusion in the aquaporin-1 water channel. , 2003, Journal of molecular biology.

[64]  William K. Smith,et al.  Guest Editorial: DL_POLY–applications to molecular simulation II , 2006 .

[65]  John E. Straub,et al.  Classical and modern methods in reaction rate theory , 1988 .

[66]  Binghua Wu,et al.  Concerted action of two cation filters in the aquaporin water channel , 2009, The EMBO journal.

[67]  Origins of enhanced proton transport in the Y7F mutant of human carbonic anhydrase II. , 2008, Journal of the American Chemical Society.