Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans

The goal of the present study was to determine whether the architectonic criteria used to identify the core region in macaque monkeys (Macaca mulatta, M. nemestrina) could be used to identify a homologous region in chimpanzees (Pan troglodytes) and humans (Homo sapiens). Current models of auditory cortical organization in primates describe a centrally located core region containing two or three subdivisions including the primary auditory area (AI), a surrounding belt of cortex with perhaps seven divisions, and a lateral parabelt region comprised of at least two fields. In monkeys the core region can be identified on the basis of specific anatomical and physiological features. In this study, the core was identified from serial sets of adjacent sections processed for cytoarchitecture, myeloarchitecture, acetylcholinesterase, and cytochrome oxidase. Qualitative and quantitative criteria were used to identify the borders of the core region in individual sections. Serial reconstructions of each brain were made showing the location of the core with respect to gross anatomical landmarks. The position of the core with respect to major sulci and gyri in the superior temporal region varied most in the chimpanzee and human specimens. Although the architectonic appearance of the core areas did vary in certain respects across taxonomic groups, the numerous similarities made it possible to identify unambiguously a homologous cortical region in macaques, chimpanzees, and humans. J. Comp. Neurol. 441:197–222, 2001. © 2001 Wiley‐Liss, Inc.

[1]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .

[2]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[3]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[4]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[5]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[6]  A. Walker The Projection of the Medial Geniculate Body to the Cerebral Cortex in the Macaque Monkey. , 1937, Journal of anatomy.

[7]  G. Bonin The cerebral cortex of the cebus monkey , 1938 .

[8]  THE CORTICAL PROJECTION OF THE MEDIAL GENICULATE BODY , 1939, Journal of neurology and psychiatry.

[9]  H. Ades,et al.  THE ACOUSTIC AREA OF THE MONKEY (MACACA MULATTA) , 1942 .

[10]  Warren S. McCulloch,et al.  FUNCTIONAL ORGANIZATION OF TEMPORAL LOBE OF MONKEY (MACACA MULATTA) AND CHIMPANZEE (PAN SATYRUS) , 1943 .

[11]  E M WALZL,et al.  Representation of the cochlea in the cerebral cortex , 1947, The Laryngoscope.

[12]  C. Woolsey Patterns of sensory representation in the cerebral cortex. , 1947, Federation proceedings.

[13]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[14]  Warren S. McCulloch,et al.  The isocortex of the chimpanzee. , 1950 .

[15]  J. Chason The Isocortex of Man , 1952 .

[16]  A. Hopf Die Myeloarchitektonik des Isocortex temporalis beim Menschen , 1954, 1954.

[17]  I. C. Whitfield,et al.  The functional organization of the auditory pathways , 1968 .

[18]  M M Mesulam,et al.  The projections of the medial geniculate complex within the sylvian fissure of the rhesus monkey. , 1973, Brain research.

[19]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.

[20]  N. Moskowitz,et al.  Projections of auditory responsive cortex in the squirrel monkey. , 1974, Brain research.

[21]  J. Minckler,et al.  A note on the gross configurations of the human auditory cortex , 1976, Brain and Language.

[22]  H. Burton,et al.  The posterior thalamic region and its cortical projection in new world and old world monkeys , 1976, The Journal of comparative neurology.

[23]  H. Burton,et al.  Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates , 1976, The Journal of comparative neurology.

[24]  J. K. Harting,et al.  Auditory pathways to the cortex in Tupaia glis , 1976, The Journal of comparative neurology.

[25]  T. Imig,et al.  Organization of auditory cortex in the owl monkey (Aotus trivirgatus) , 1977, The Journal of comparative neurology.

[26]  W. C. Hall,et al.  The medial geniculate body of the tree shrew, Tupaia glis II. Connections with the neocortex , 1978, The Journal of comparative neurology.

[27]  T. Imig,et al.  Projections of auditory cortex upon the thalamus and Midbrain in the owl monkey , 1978, The Journal of comparative neurology.

[28]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[29]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[30]  T. Imig,et al.  Auditory cortico‐cortical connections in the owl monkey , 1980, The Journal of comparative neurology.

[31]  H. Seldon Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception , 1981, Brain Research.

[32]  H. Seldon Structure of human auditory cortex. I. Cytoarchitectonics and dendritic distributions , 1981, Brain Research.

[33]  B E Pfingst,et al.  Characteristics of neurons in auditory cortex of monkeys performing a simple auditory task. , 1981, Journal of neurophysiology.

[34]  H. Seldon Structure of human auditory cortex. III. Statistical analysis of dendritic trees , 1982, Brain Research.

[35]  C. Elberling,et al.  Auditory magnetic fields: source location and 'tonotopical organization' in the right hemisphere of the human brain. , 1982, Scandinavian audiology.

[36]  C. Woolsey,et al.  Cortical Auditory Area of Macaca mulatta and Its Relation to the Second Somatic Sensory Area (Sm II) , 1982 .

[37]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[38]  A M Galaburda,et al.  The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey , 1983, The Journal of comparative neurology.

[39]  Alan Peters,et al.  Association and Auditory Cortices , 1985, Cerebral Cortex.

[40]  Peter Herscovitch,et al.  Tonotopic organization in human auditory cortex revealed by positron emission tomography , 1985, Hearing Research.

[41]  M. Merzenich,et al.  Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus) , 1986, The Journal of comparative neurology.

[42]  F. Geneser Distribution of acetylcholinesterase in the hippocampal region of the rabbit: I. Entorhinal area, parasubiculum, and presubiculum , 1986, The Journal of comparative neurology.

[43]  L. Aitkin,et al.  Connections of the primary auditory cortex in the common marmoset, Callithrix jacchus jacchus , 1988, The Journal of comparative neurology.

[44]  K. Lehnertz,et al.  Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. , 1988, Electroencephalography and clinical neurophysiology.

[45]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[46]  J. Kaas,et al.  Connections of primary auditory cortex in the new world monkey, Saguinus , 1989, The Journal of comparative neurology.

[47]  K Zilles,et al.  Cerebral asymmetry: MR planimetry of the human planum temporale. , 1989, Journal of computer assisted tomography.

[48]  M Hoke,et al.  Tonotopic organization of the auditory cortex: pitch versus frequency representation. , 1989, Science.

[49]  M. Wong-Riley Cytochrome oxidase: an endogenous metabolic marker for neuronal activity , 1989, Trends in Neurosciences.

[50]  P. B. Cipolloni,et al.  Connectional analysis of the ipsilateral and contralateral afferent neurons of the superior temporal region in the rhesus monkey , 1989, The Journal of comparative neurology.

[51]  F. Musiek,et al.  Asymmetries of the auditory areas of the cerebrum. , 1990, Journal of the American Academy of Audiology.

[52]  A. Hendrickson,et al.  Calcium‐binding proteins as markers for subpopulations of GABAergic neurons in monkey striate cortex , 1990, The Journal of comparative neurology.

[53]  Lindsay Aitkin,et al.  The auditory cortex : structural and functional bases of auditory perception , 1990 .

[54]  O Bertrand,et al.  Evidence for a tonotopic organization of the auditory cortex observed with auditory evoked potentials. , 1991, Acta oto-laryngologica. Supplementum.

[55]  Investigation of the external aperture of the vestibular aqueduct in Menière's disease by three-dimensional image analysis. , 1992, Acta oto-laryngologica.

[56]  C. Geula,et al.  Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex , 1992, Brain Research.

[57]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[58]  R Llinás,et al.  Tonotopic organization of human auditory cortex revealed by multi-channel SQUID system. , 1992, Acta oto-laryngologica.

[59]  Richard S. J. Frackowiak,et al.  The anatomy of phonological and semantic processing in normal subjects. , 1992, Brain : a journal of neurology.

[60]  Karl J. Friston,et al.  Regional response differences within the human auditory cortex when listening to words , 1992, Neuroscience Letters.

[61]  Christoph E. Schreiner,et al.  Functional organization of the auditory cortex: maps and mechanisms , 1992, Current Opinion in Neurobiology.

[62]  Alan C. Evans,et al.  Lateralization of phonetic and pitch discrimination in speech processing. , 1992, Science.

[63]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[64]  A. Galaburda,et al.  Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. , 1993, Cerebral cortex.

[65]  R J Ilmoniemi,et al.  Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. , 1993, Psychophysiology.

[66]  J M Badier,et al.  Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. , 1994, Electroencephalography and clinical neurophysiology.

[67]  J. Binder,et al.  Functional magnetic resonance imaging of human auditory cortex , 1994, Annals of neurology.

[68]  D L Rosene,et al.  Corticothalamic connections of auditory‐related areas of the temporal lobe in the rhesus monkey , 1994, The Journal of comparative neurology.

[69]  J. Rauschecker,et al.  Processing of complex sounds in the macaque nonprimary auditory cortex. , 1995, Science.

[70]  Risto Näätänen,et al.  Sustained fields of tones and glides reflect tonotopy of the auditory cortex , 1995, Neuroreport.

[71]  T. Elbert,et al.  Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. , 1995, Electroencephalography and clinical neurophysiology.

[72]  E G Jones,et al.  Subdivisions of macaque monkey auditory cortex revealed by calcium‐binding protein immunoreactivity , 1995, The Journal of comparative neurology.

[73]  C. Manelfe,et al.  Activation of Association Auditory Cortex Demonstrated with Functional MRI , 1995, NeuroImage.

[74]  M. Molinari,et al.  Auditory thalamocortical pathways defined in monkeys by calcium‐binding protein immunoreactivity , 1995, The Journal of comparative neurology.

[75]  Paul J. Abbas,et al.  A chronic microelectrode investigation of the tonotopic organization of human auditory cortex , 1996, Brain Research.

[76]  M. Gazzaniga,et al.  Acetylcholinesterase staining in human auditory and language cortices: regional variation of structural features. , 1996, Cerebral cortex.

[77]  G Paludetti,et al.  SPET monitoring of perfusion changes in auditory cortex following mono- and multi-frequency stimuli. , 1996, Nuklearmedizin. Nuclear medicine.

[78]  Alan C. Evans,et al.  Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. , 1996, Cerebral cortex.

[79]  David Swinney,et al.  Functional MR Imaging during Auditory Word Perception: A Single-Trial Presentation Paradigm , 1997, Brain and Language.

[80]  G. Ehret The auditory cortex , 1997, Journal of Comparative Physiology A.

[81]  F Ottaviani,et al.  Tonotopic organization of human auditory cortex analyzed by SPET. , 1997, Audiology : official organ of the International Society of Audiology.

[82]  E. G. Jones,et al.  Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys , 1997, The Journal of comparative neurology.

[83]  P. Heil,et al.  Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography , 1997, Journal of Comparative Physiology A.

[84]  V M Haughton,et al.  Functional MR of the primary auditory cortex: an analysis of pure tone activation and tone discrimination. , 1997, AJNR. American journal of neuroradiology.

[85]  M. Mishkin,et al.  Serial and parallel processing in rhesus monkey auditory cortex , 1997, The Journal of comparative neurology.

[86]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[87]  G. Mangun,et al.  Tonotopy in human auditory cortex examined with functional magnetic resonance imaging , 1997, Human brain mapping.

[88]  Bernd Lütkenhöner,et al.  High-Precision Neuromagnetic Study of the Functional Organization of the Human Auditory Cortex , 1998, Audiology and Neurotology.

[89]  H. Scheich,et al.  Functional magnetic resonance imaging of a human auditory cortex area involved in foreground–background decomposition , 1998, The European journal of neuroscience.

[90]  J. Kaas,et al.  Subdivisions of AuditoryCortex and Levels of Processing in Primates , 1998, Audiology and Neurotology.

[91]  B. Ross,et al.  Auditory afterimage: Tonotopic representation in the auditory cortex , 1998, Neuroreport.

[92]  Timm Rosburg,et al.  Hemispheric differences in frequency dependent dipole orientation of the human auditory evoked field component N100m , 1998, Neuroscience Letters.

[93]  I. Peretz,et al.  Contribution of different cortical areas in the temporal lobes to music processing. , 1998, Brain : a journal of neurology.

[94]  Christoph E. Schreiner,et al.  Spatial Distribution of Responses to Simple and Complex Sounds in the Primary Auditory Cortex , 1998, Audiology and Neurotology.

[95]  J. Kaas,et al.  Thalamocortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[96]  J. Kaas,et al.  Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[97]  K. Scheffler,et al.  Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI , 1998, Hearing Research.

[98]  J. Rauschecker Parallel Processing in the Auditory Cortex of Primates , 1998, Audiology and Neurotology.

[99]  S. Clarke,et al.  Compartments within human primary auditory cortex: evidence from cytochrome oxidase and acetylcholinesterase staining , 1998, The European journal of neuroscience.

[100]  C. Leonard,et al.  Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gyrus: where is it? , 1998, Cerebral cortex.

[101]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[102]  G. Recanzone,et al.  Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey , 1999, The Journal of comparative neurology.

[103]  R. Burkard,et al.  The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities. , 1999, Cerebral cortex.

[104]  J. Edeline Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms , 1999, Progress in Neurobiology.

[105]  Alan C. Evans,et al.  Event-Related fMRI of the Auditory Cortex , 1998, NeuroImage.

[106]  Lutz Jäncke,et al.  Attention modulates activity in the primary and the secondary auditory cortex: a functional magnetic resonance imaging study in human subjects , 1999, Neuroscience Letters.

[107]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[108]  F. Chollet,et al.  Differential fMRI Responses in the Left Posterior Superior Temporal Gyrus and Left Supramarginal Gyrus to Habituation and Change Detection in Syllables and Tones , 1999, NeuroImage.

[109]  J. Kaas,et al.  Auditory processing in primate cerebral cortex , 1999, Current Opinion in Neurobiology.

[110]  G. Recanzone,et al.  Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. , 2000, Journal of neurophysiology.

[111]  R. Zatorre,et al.  Voice-selective areas in human auditory cortex , 2000, Nature.

[112]  E. T. Possing,et al.  Human temporal lobe activation by speech and nonspeech sounds. , 2000, Cerebral cortex.

[113]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[114]  S. Scott,et al.  Identification of a pathway for intelligible speech in the left temporal lobe. , 2000, Brain : a journal of neurology.

[115]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[116]  西村 洋 Sign language "heard"in the auditory cortex , 2000 .

[117]  J. E. Hind,et al.  Auditory cortex on the human posterior superior temporal gyrus , 2000, The Journal of comparative neurology.

[118]  J. Rauschecker,et al.  Mechanisms and streams for processing of "what" and "where" in auditory cortex. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Daniel S. O'Leary,et al.  An MRI-Based Parcellation Method for the Temporal Lobe , 2000, NeuroImage.

[120]  Hellmuth Obrig,et al.  Linear Aspects of Changes in Deoxygenated Hemoglobin Concentration and Cytochrome Oxidase Oxidation during Brain Activation , 2001, NeuroImage.

[121]  Klaus Scheffler,et al.  Functional Fields in Human Auditory Cortex Revealed by Time-Resolved fMRI without Interference of EPI Noise , 2001, NeuroImage.

[122]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[123]  J. Rauschecker,et al.  Functional Specialization in Rhesus Monkey Auditory Cortex , 2001, Science.