Low-order finite element method for the well-posed bidimensional Stokes problem

We work on a low-order finite element approximation of the vorticity, velocity and pressure formulation of the bidimensional Stokes problem. In a previous paper, we have introduced the adequate space in which to look for the vorticity in order to have a well-posed problem. In this paper, we deal with the numerical approximation of this space, prove optimal convergence of the scheme and show numerical experiments in good accordance with the theory. We remark that despite one supplementary unknown(the vorticity), results of the scheme are much better than the ones obtained with the P1 plus bubble−P1 element in the velocity–pressure formulation.

[1]  J. Nitsche,et al.  Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .

[2]  Jean-Pierre Aubin,et al.  Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods , 1967 .

[3]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[4]  James H. Bramble,et al.  On variational formulations for the Stokes equations with nonstandard boundary conditions , 1994 .

[5]  Jean-Michel Dischler,et al.  Simulating Fluid-Solid Interaction , 2003, Graphics Interface.

[6]  Vivette Girault,et al.  Mixed spectral element approximation of the Navier-Stokes equations in the stream-function and vorticity formulation , 1992 .

[7]  F. Dubois,et al.  First vorticity-velocity-pressure numerical scheme for the Stokes problem , 2003 .

[8]  M. Bercovier,et al.  A finite element for the numerical solution of viscous incompressible flows , 1979 .

[9]  David Trujillo,et al.  Vorticity-velocity-pressure formulation for Stokes problem , 2003, Math. Comput..

[10]  M. Gunzburger,et al.  Analysis of least squares finite element methods for the Stokes equations , 1994 .

[11]  J. Lions,et al.  PROBLEMES AUX LIMITES SENSITIFS , 1994 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[14]  JUNPING WANG,et al.  A POSTERIORI ERROR ESTIMATE FOR STABILIZED FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS , 2011 .

[15]  V. Girault,et al.  Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in ³ , 1988 .

[16]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[17]  F. Dubois Une formulation tourbillon-vitesse-pression pour le problème de Stokes , 1992 .

[18]  Variational approaches to the two-dimensional Stokes system in terms of the vorticity , 1991 .

[19]  C. Bernardi,et al.  Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem , 2006 .

[21]  Lev Davidovich Landau,et al.  Mécanique des fluides , 1989 .

[22]  F. Dubois,et al.  Vorticity–velocity-pressure and stream function-vorticity formulations for the Stokes problem , 2003 .

[23]  I. Babuska Error-bounds for finite element method , 1971 .

[24]  Christine Bernardi,et al.  Spectral discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes equations , 2006, Numerische Mathematik.

[25]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[26]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[27]  M. Salaün,et al.  Coupling harmonic functions‐finite elements for solving the stream function‐vorticity Stokes problem , 2004 .

[28]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .

[29]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[30]  Christine Bernardi,et al.  Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..

[31]  Christine Bernardi,et al.  Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes problem , 2007 .