Low-order finite element method for the well-posed bidimensional Stokes problem
暂无分享,去创建一个
[1] J. Nitsche,et al. Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens , 1968 .
[2] Jean-Pierre Aubin,et al. Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods , 1967 .
[3] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[4] James H. Bramble,et al. On variational formulations for the Stokes equations with nonstandard boundary conditions , 1994 .
[5] Jean-Michel Dischler,et al. Simulating Fluid-Solid Interaction , 2003, Graphics Interface.
[6] Vivette Girault,et al. Mixed spectral element approximation of the Navier-Stokes equations in the stream-function and vorticity formulation , 1992 .
[7] F. Dubois,et al. First vorticity-velocity-pressure numerical scheme for the Stokes problem , 2003 .
[8] M. Bercovier,et al. A finite element for the numerical solution of viscous incompressible flows , 1979 .
[9] David Trujillo,et al. Vorticity-velocity-pressure formulation for Stokes problem , 2003, Math. Comput..
[10] M. Gunzburger,et al. Analysis of least squares finite element methods for the Stokes equations , 1994 .
[11] J. Lions,et al. PROBLEMES AUX LIMITES SENSITIFS , 1994 .
[12] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[13] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[14] JUNPING WANG,et al. A POSTERIORI ERROR ESTIMATE FOR STABILIZED FINITE ELEMENT METHODS FOR THE STOKES EQUATIONS , 2011 .
[15] V. Girault,et al. Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in ³ , 1988 .
[16] R. Dautray,et al. Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .
[17] F. Dubois. Une formulation tourbillon-vitesse-pression pour le problème de Stokes , 1992 .
[18] Variational approaches to the two-dimensional Stokes system in terms of the vorticity , 1991 .
[19] C. Bernardi,et al. Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem , 2006 .
[21] Lev Davidovich Landau,et al. Mécanique des fluides , 1989 .
[22] F. Dubois,et al. Vorticity–velocity-pressure and stream function-vorticity formulations for the Stokes problem , 2003 .
[23] I. Babuska. Error-bounds for finite element method , 1971 .
[24] Christine Bernardi,et al. Spectral discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes equations , 2006, Numerische Mathematik.
[25] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[26] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[27] M. Salaün,et al. Coupling harmonic functions‐finite elements for solving the stream function‐vorticity Stokes problem , 2004 .
[28] A. Arakawa. Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .
[29] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[30] Christine Bernardi,et al. Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..
[31] Christine Bernardi,et al. Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier–Stokes problem , 2007 .